優先権侵害が追い貸しと貸し渋りに及ぼす影響についての実証研究。

山崎福寿・瀬下博之・太田智之・杉原茂

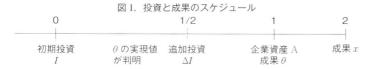
1990年代後半以降、日本の貸出市場では、貸し渋りと追い貸しという二つの非効率性の問題が議論されてきた。瀬下・山崎(2004)は、債権者間で優先権が侵害される規定が日本の民法や倒産法に存在しており、このような優先権侵害があると、一見相反するように見える「追い貸し」と「貸し渋り」という銀行行動についての二つの仮説を整合的に説明できることを理論的に示している。

本稿では、銀行の貸出関数を推計し、この優先権侵害に基づく仮説とその対立仮説であるデット・オーバーハングに基づく貸し渋りの議論とを比較検証する。貸出関数におけるキャッシュ・フローの係数の符号に着目して、仮説を検証した結果、優先権侵害に基づく仮説と整合的な結果が得られた。これに対して、デット・オーバーハングに基づく説明を支持するような十分な結果は得られなかった。JEL Classification Codes; G12, G33, K10

1. はじめに

1990年代は、日本経済が著しく停滞した時代であった。80年代の金融緩和を背景に地価や株価が持続的に上昇した後に、急激にそれらが下落したことによって、大企業や金融機関が次々と破綻していった。こうした銀行や企業の破綻処理をめぐって、さまざまな問題が存在することが次第に明らかになってきた。それは、破綻処理の事前と事後の問題といっていいかもしれない。

破綻処理は、事前に約束されたルールの下で進行することが予定されているにもかかわらず、事後的には法律上のさまざまな障害によって、事前のルールが歪められている。有名な短期賃借権をめぐるさまざまなトラブルは、執行の場面で抵当権者の権利が著しく侵害されるというまた、手続きの不備によって、抵当不動産の執行や競売の妨害が可能になり、さまざまな権利侵害が保生じている。本来優先すべき抵当権者の権利が侵害されることによって、著しい優先権侵害が発生しているという状況がある。こうとを受先権侵害が存在するときに、資金市場にどのような影響が及ぶかについて理論的に検討したのが、瀬下・山崎(2004)の研究である。


この研究では第一に、本来、効率的でないプロジェクトに対しては融資をすべきではないにもかかわらず、こうした優先権侵害がある状況の下では、企業の清算が先送りされ、優先債権者による追加融資、すなわち「追い貸し」が起こることが理論的に明らかになった。第二に、

追い貸しと同時に貸し渋りが生じることも明らかになった。将来、非効率なプロジェクトに対して追い貸しが実施されることが、かなりの確率で事前に予想されるときには、仮にこの企業の当初のプロジェクトが効率的であっても、その企業に対する貸出を事前に抑制する「貸したり」が生じる。瀬下・山崎(2004)では、追い貸しと貸し渋りという一見矛盾する銀行の貸し出し態度の併存を理論的に説明できる点にその特徴がある中。

太田・杉原・瀬下・山崎(2006)では、企業の 負債構成やメイン・バンクの存在が、企業価値 や投資の効率性(トービンの q)にどのような影 響を及ぼしているかを、財務データを用いて検 証した、優先権侵害がいま述べたような深刻な 事態を招いているとすると、非効率な企業において、負債の増加は侵害の可能性を高める結果、 企業の価値を一層低下させるはずであり、実証 結果においては、この結論と整合的な結果が得 られた。

しかし、「貸し渋り」や「追い貸し」を検証するためには、直接、貸出関数を推定することが望ましい。本稿の目的は、銀行の貸出関数を直接推計することによって、瀬下・山崎(2004)で提示された仮説を検証することにある。その際、この仮説はデット・オーバーハングの議論の対立仮説にもなっており、キャッシュ・フローの多寡によって貸出が受ける影響に差異が生じる。そこでサンプルを分け、キャッシュ・フローの係数に焦点を当てて、これら二つの仮説を比較検討する50.

第2節では、簡単に瀬下・山崎の優先権侵害

のモデルを説明することによって、流動性の多 寡によって貸出関数がどのような影響を受ける かを明らかにする。第3節では、これに基づい て貸出関数を検証することによって、優先権侵 害が貸出関数に影響を及ぼしているか否かを間 接的に検証することにしたい。最後に第4節では、結論が要約され、貸し渋りや追い貸しは優 先権侵害による可能性が高いこと、またデット・オーバーハングによる貸し渋り等の仮説は、 十分な説得力を持ち得ないことが理論的にも実 証的にも明らかになる。

2. 追い貸しと貸し渋りをめぐる理論について

2.1 追い貸しのモデル

瀬下・山崎(2004)は、「貸し渋り」や「追い貸し」と呼ばれる、一見矛盾する非効率な銀行行動を整合的に説明しうる仮説を、日本の倒産法制や担保法制に深刻な優先権侵害が存在することに焦点をあてて、提示している⁶⁾.

まず図1に従って、そのモデル設定を説明しよう。以下では割引率は0に基準化する。いま、固定的な資産 A を保有する企業を考える。この企業は時点0で初期投資Iを行うと、時点1にキャッシュ・フローの成果 θ が得られるとする。 θ は確率変数で、期待値で見てこの初期投資は効率的であるとする。すなわち、割引率を0として $E(\theta) \ge I$ が成り立つ。

企業は投資Iの実施後,その成果 θ の値を 実現前に正しく予想できるとする。この時点は 成果実現の直前でもかまわないが,便宜上 1/2時点と呼ぶ。この場合,企業をそのまま時点 1で清算すれば, $A+\theta$ の清算価値を得ることが できる。

しかし、企業は時点 1/2 において成果の実現値が判明した直後に、追加投資 ΔI の機会を有するとする。この追加投資によって事業を継続する場合、時点 1 で θ を得たうえで、さらに時点 2 で固定資産を含めてx の価値を得るとする。この時点 2 の成果 x は確率変数であり、さらに期待値で見て非効率とする。すなわち割引率を 0 として E(x) < $\Delta I+A$ が成立する 7 .

時点 0 における効率的な初期投資のための資金を、企業は時点 1 に返済期日をむかえる額面 B の負債で調達したとしよう⁸. この負債を優 先債権、その保有者を優先債権者 と呼ぶ、この優先債権者が、非効 率な追加投資 ΔI に対する融資に も追加的に応じた場合に、その融 資を「追い貸し」と定義する。も

ちろん,追加投資に対して外部からの資金調達 も可能とする. なおこのモデルでは,経営者と株主間のエー

ジェンシー問題については考慮せず,経営者は 株主の忠実な代表,あるいはオーナー経営者と して扱う、株主は有限責任であるから、その意 思決定が非効率性を生み出す可能性は良く知ら れている。ただし上記のモデルにおいては、時 点 1 において当初の投資成果 θ によって、優 先債権を十分に返済できるかぎり,経営者は非 効率な追加投資のインセンティブを持たない. 非効率な投資からの損失は, すべて経営者や株 主の利得の低下につながるからである。このこ とは、優先権侵害の有無に関係なく成立する9). したがって, 非効率な追加投資の問題を議論 するにあたり、以下では実現したキャッシュ・ フローθでは、企業が優先債権を完済できな い状況を前提に議論する. この状況は時点1に おける流動性不足の状態を意味し, 債務不履行 が発生する状況になる. 時点1で債務不履行が 起これば、優先債権者は担保権を行使し、企業 を清算することができる. 時点1で企業を清算 しなければ、優先債権者はキャッシュ・フロー の成果 θ だけの弁済を受け、残債権を次期に 継続することになる.

2.2 追い貸しが生じる基本的メカニズム

以上のモデルを用いて追い貸しが生じるメカニズムを説明しよう.いま法的に優先権が侵害される状況を考える¹⁰⁾.このような優先権侵害は、劣後債権者に優先債権の価値を強制的に移転することを意味する.そのため、劣後債権者はその価値も考慮に入れて、融資を判断することになる.

以下では、優先権侵害が追い貸しをもたらす 点を説明するために、図2の手順で取引が行わ れる状況を考えよう.

図 2 では、優先債権者として銀行を考えている。図中(1)は時点 0 の選択であり、優先債権者(銀行)が効率的な投資機会 I に融資するか否かを選択する。融資しなければ取引はそこで終わるが、その状況は効率的な投資に融資しないという点で「貸し渋り」を意味する。

融資した場合,時点 1/2 で時点 1 の成果 θ

(3)

融資しない

図2. 取引の手順と結果

の実現値が明らかになる。実現する成果で優先 債権を返済できないことが判明し、直後に債務 者が非効率な追加投資を実施しようとする場合 を考える。この段階で、優先債権者(銀行)は、 これに応じて追加融資するか否かを決める(図 中(2))。もし応じれば、非効率な追加融資がな されたという点で、「追い貸し」と解釈される。

通常、図中(2)の状況において優先債権者(銀行)は非効率な追加融資には応じない、そのとき、債務者は外部の投資家から資金調達することも検討する。この状況が図中(3)である。本来は、外部の投資家も非効率な追加投資に融資することはない。しかし、優先権侵害によって、優先債権から新規債権に企業資産の清算価値を移転させることができる¹¹⁾。この価値移転を考慮すると、図中(3)の状況で、外部の投資家が融資に応じる可能性がある¹²⁾。

その場合でも、当初の投資成果 θ だけでは債務者が優先債権を返済できない状況を考えているから、時点1で優先債権が債務不履行となり、これを理由に優先債権者は企業を清算できる。この状況が図中(4)である。

しかし、ここでも優先弁済権が侵害されるとき、優先債権者は(4)で企業を清算せずに、そのまま先送りをするインセンティブを持ってしまうことがある。(4)で清算すると優先権侵害によって清算価値の一部が新規の追加融資者に確実に移転してしまうのに対して、清算を先送りすれば、優先権が侵害される部分について継続に伴うリスクを新規融資者にも一部負担させることができ、優先権侵害にともなう損失を減らせるからである。

さて、図2の手順で取引が行われる場合、優先債権者(銀行)は図中(2)で自分が断ると、(3)で外部から非効率な融資がなされると予想する。その場合には、そのような外部融資を封じるために、(2)の時点で非効率と分かっている追加融資に自ら応じてしまうという結論を得る。こ

れは、優先権侵害にともなう所得移転額のほうが、(4)で新規融資者に負わせることができるリスク移転額よりも必ず大きくなるからである。ここに非効率な「追い貸し」が生じる理由がある¹³⁾.

清算

さらに、将来このような非効率な「追い貸し」が不可避になると予想すれば、当初の投資の収益性が、将来の予想される「追い貸し」からのコストを上回らない限り、銀行は当初の融資には応じなくなる。これが「貸し渋り」と呼ばれる現象である。逆に、当初の投資の効率性が、将来の「追い貸し」から被るコストの期待値を上回る場合には、そのコストを覚悟の上で当初の融資に応じることになる。そして実際にその当初の投資が失敗した場合に、さきに述べた条件が成り立つと非効率な「追い貸し」が実施される14)。

2.3 モデルの実証上の含意

次に、瀬下・山崎(2004)の実証上のインプリケーションについて考えてみよう。いま、モデルに従って、時点1で、実現したキャッシュ・フローの水準の下では、優先債権をすべて返済できないような資金不足の状況にある企業を考えてみよう。すでに定義したように、Aを企業の清算価値とし、当初の投資から生じたキャッシュ・フローの成果を θ とする。

優先債権の額面額をBとすると、成果 θ によって返済された優先債権の残額(優先残債権)は $B-\theta$ と書ける。優先権侵害がなければ、時点 $1(図 2 \, o(4))$ で企業の清算を選択した場合、この残債権に対して優先債権者は $\min\{A,B-\theta\}$ をすべて得られる。これに対して、法的な優先権侵害によって清算時に優先債権者から劣後する新規融資者にwの価値が移転すると、時点1で企業を清算した場合に優先債権者が受け取れる額は $\min\{A-w,B-\theta\}$ となる。もちろん清算せずに残債権 $B-\theta$ を次期(時点

2)まで繰り延べることもできる. この継続価値 を $V_{B-\theta}(w)$ によって表そう.

ここで $V_{B-\theta}(w) \leq B-\theta$ に注意すると,優先権侵害の下で非効率な追い貸しが生じる条件は,以下の二つの式が成立する場合となる 15 .

$$A - w \le V_{B-\theta}(w) \tag{1}$$

かつ

$$k \le \min\{(B-\theta) - V_{B-\theta}(w), A - V_{B-\theta}(w)\}$$
(2)

ここでkは追加投資の非効率性の大きさを表す。

条件式(1)は,優先債権者が時点1で企業を清算しない条件を表している.清算時における優先債権者の受け取り額がA-w,企業を継続した時の優先残債権の価値 $V_{B-\theta}(w)$ よりも小さいことが条件となる.清算時の優先権侵害による価値移転wが確実なものであるのに対して,継続時には,侵害によって獲得できる価値部分について劣後債権者に継続時のリスク負担が生じる.このリスク負担が十分に大きいとき,優先債権者は企業を時点1で清算せず,残債権を繰り延べて企業を継続する.

条件式(2)は、外部の投資家が非効率な追加投資に融資する条件を表している。優先権侵害によって移転できる(企業継続時のリスク負担を 考慮した)価値 ($\min\{(B-\theta)-V_{B-\theta}(w),A-V_{B-\theta}(w)\}$)が、追加投資の非効率性 kを上回れば、外部の投資家が追加投資に融資する参加条件が満たされる。

企業清算時に優先債権を完済できる場合 $(A \ge B - \theta)$ には、企業が継続されることによって優先債権者が失う価値移転額は $(B - \theta) - V_{B-\theta}(w)$ である。完済できない場合には、優先債権者が清算価値 A をすべて得られたはずであるから、価値移転額は $A - V_{B-\theta}(w)$ となる。

条件式(1)と(2)が同時に成り立つとき、外部の投資家が融資する契約を、経営者(あるいは株主)の損失をともなうことなく作ることができ、逆に、これにともなう優先権侵害がもたらす損失を回避する目的で、優先債権者自身による非効率な追い貸しが図2の(2)の状況で生じる結果となる.

したがって、追い貸しは条件式(1) と(2) が同時に成り立つときに生じる。そこで、この二つの条件式から実証上の仮説を導こう。いま、上記のモデルにおいて、優先残債権の継続価値 $V_{B-\theta}(w)$ について、 $\partial V_{B-\theta}(w)/\partial \theta \in (-1,0)$ が成立することを簡単に示すことができる 16 .

上の二つの条件式とこの導関数から、企業のキャッシュ・フロー θ が増加したとき、追い貸しが生じる可能性が低下することが分かる。 θ が増加すると、優先債権の返済に充てられてその残債権を減らすため、その継続時の価値も低下する。そのため条件式(1)が成立する可能性が低くなる。

また、 $A \ge B - \theta$ のとき、 θ が増加すると、同じ理由によって優先債権の残高が減少することにともなって、移転する残債権の価値が減るから、条件式(2) も成立する可能性は低くなる、これに対して、 $A < B - \theta$ のときには $A - V_{B-\theta}(w)$ の値は大きくなるが、条件式(1) と(2)から

$$w \ge A - V_{B-\theta}(w) \ge k$$

となる. このため、キャッシュ・フロー θ の増加に伴う $V_{B-\theta}(w)$ の低下は、限界的には条件式(2)の成否に影響を与えず、(1)の成否にのみ影響をあたえる 17 . そのため追い貸しの可能性は減ると考えられる.

仮説 1(優先権侵害にともなう追い貸し仮説): 既存債権をすべて返済できないような資金不足下にある企業を考える. このとき, 非効率な投資プロジェクトを有する企業に対して, 優先権侵害に基づいて追い貸しが生じるという仮説が正しければ, キャッシュ・フローが増加すると追い貸しは減少する.

2.4 その他の仮説との関係

キャッシュ・フローと借り入れとの関係には、他にもさまざまな仮説が存在する。特に本稿の文脈においては、デット・オーバーハングとの関係が重要である。デット・オーバーハングとは、効率的な投資であっても、その成果がその投資のための新規融資の弁済よりも、優先弁済権がある既存債権の弁済に先に充当されるため、新規融資者に十分な分配が行われなくなる結果、資金調達ができなくなるという意味で、優先権侵害とは逆の問題である。すなわち、新規融資者から優先債権者への所得移転の問題である。90年代以降に深刻化した貸し渋りの原因として、しばしばこの理論が援用される。

資金制約下の企業で、デット・オーバーハングによって貸し渋りが生じているとすると、キャッシュ・フローが高まれば企業の負債残高が減少するから、新規融資の価値が既存債権に移転するというデット・オーバーハングが生じる可能性は小さくなる。このことは貸し渋りが緩

和されることを意味する。したがって、この仮 説の下では、企業のキャッシュ・フローが増え ると貸し出しは増加するはずである。

仮説 2(デット・オーバーハングにともなう貸し渋り仮説):既存債権をすべて返済できないような資金不足下にある企業を考える。デット・オーバーハングによって貸し渋りが生じているとする仮説が正しければ、効率的な投資プロジェクトを有する企業に対しては、そのキャッシュ・フローが増加すると貸し出しは増加する。

ところで、瀬下・山崎(2004)の仮説に従えば、優先権侵害にともなって生じる事後的なコスト負担を回避するために貸し渋りが生じている。このことは効率的な投資プロジェクトをもつ企業でも、優先権侵害の深刻化によって借り入れのためのコストが高まることを意味する。このような事後的な経営者のモラルハザードにともなう借り入れコストの上昇は、エージェンシー・コストが存在するとき、キャッシュ・フローと借り入れの関係については、よく知られているようにペッキング・オーダー仮説(Mayers and Majulf(1984))を適用することができる。

この仮説では、外部資金に対しては借り手の モラルハザードの可能性などを反映したエージェンシー・コストが付加されるから、借り手資 エージェンシー・コストの低い資金から投資資金を調達しようとする。ここで優先権侵害に登るを考えよう。このとき、効率的な企業ではキャがあるようとするにずである。このような需要サイドの要因を反映して、銀行の貸し出しが減少している可能性がある。

したがって、キャッシュ・フローが増加しているときに貸し出しが減少する場合には、デット・オーバーハングによる貸し渋りではなく、優先権侵害など何らかの借り手のモラルハザードが貸し渋りをもたらしていることになる。すなわち、キャッシュ・フローの増加が貸し出しを減少させていれば、それは、貸し渋りが優先権侵害などの借り手のモラルハザードに起因している間接的な証拠となる¹⁸⁾.

仮説 3(エージェンシー・コストにともなう貸し渋り仮説):効率的な企業において、キャ

ッシュ・フローが増加したときに銀行貸出が減少していれば、優先権侵害などにともなうエージェンシー・コストの増大が貸し渋りの要因である。

ただし、ペッキング・オーダー仮説は同時に、優先権侵害やエージェンシー・コストの上昇とは関係なく、キャッシュ・フローと借り入れの代替関係が生じることを説明する。上記の仮説3は効率的な企業で一般に起こりうるが、このような通常の調達資金の代替関係は、資金不足企業では生じる余地はないと考えられるため、仮説3についても主に資金不足企業を対象に検証する。

他方で、90年代に日本企業は、積極的に債務を減らす行動をとっていたとも言われている。この中には、エージェンシー・コストの上昇の効果も含まれるが、少なくとも実際に調達資金の代替の影響がどの程度あったのかを確認するためにも、追加の検証として資金不足状態になかった企業についても、キャッシュ・フローと銀行貸し出しとの関係を推計する。もし、資金不足にない同じ効率性の企業グループにおいて、この影響が小さければペッキングオーダーの影響は考慮することなく、資金不足状態にある企業の実証結果を評価できる。

2.5 実証分析の戦略

実証分析の方法を整理しよう。上記の仮説を 実証するには、まず企業が効率的な投資機会を 有していたか否かでサンプルを分ける必要があ る。本稿では企業の投資機会の効率性の指標と して、主として本業の収益力を示す総資産営業 利益率(ROA)を用いる。ROA が高い企業と低 い企業でサンプルを分割し、貸出行動が効率的 企業と非効率的企業で異なるかどうかを検証す る。

貸出関数の基本的な説明変数として、本稿ではトービンのqを用いる。トービンのqは企業投資の効率性についての十分統計量であるから、貸出市場に何の歪みもなければ、他の変数は企業への貸出額に何の影響も及ぼさない。そのため、qを説明変数に含めて推計するとき、企業のキャッシュ・フローの水準は、銀行の企業への貸出額には何の影響も及ぼしていないはずである190.

しかし、貸出市場に何らかの非効率性が存在 する場合には、キャッシュ・フローなど他の変 数が銀行行動に影響を与える。そのため基本と なる計測式では、トービンのqとキャッシュ・フローを説明変数として、銀行の企業貸出額への影響を検証する。このとき、キャッシュ・フローの係数が有意であれば、貸出市場に何らかの非効率性が存在する理由となる 20 .

ここで上記の3つの仮説のいずれが成立しているかを検証するためには、企業がおかれている状況に応じて、仮説が支持している係数の符号条件が有意に満たされているか否かを検定する必要がある.

上の仮説で考慮すべき状況は,仮説1の優先 権侵害にともなう追い貸し仮説については, 「資金不足の状態にあり, 非効率な企業をサン プルとした貸出関数の推計では、キャッシュ・ フローの係数が負」となるか否かを検証する. 仮説2のデット・オーバーハングによる貸し渋 り仮説については,「資金不足の状態にあり, 効率的な企業をサンプルとするなら、キャッシ ュ・フローの係数が正」となるか否かを検証す る. 仮説3の優先権侵害などのエージェンシ -・コストの上昇に起因する貸し渋り仮説では, 特に通常のペッキング・オーダー仮説に基づく 調達資金の代替関係を排除するために,「資金 不足状態にある効率的な企業のサンプルで, キ ャッシュ・フローの係数が負しとなるか否かを 検証する.

なお、いずれの検証でも、ペッキング・オーダーの影響の大きさは、資金不足状態にない企業の実証結果と比較することで捕捉できると考えられる²¹⁾.

2.6 優先権侵害に関する判例

なお1990年前後には、日本の担保法制を揺るがせる大きな二つの判決が言い渡された。第一は、平成元年(1989年)6月5日の最高裁判決である。これは賃借権(許害的短期賃借権と呼ばれる)を設定して抵当権実行を妨害しようとする行為を予防するために、担保権者が自ら賃借権の仮登記をして法的に対抗してきた併用賃借権を、実態のない賃借権として否定した判決である。これによって濫用的な賃貸借契約を予防する手段が絶たれ、抵当権者には、事後的に詐害的短期賃借権に対抗する手段しか残されなくなった。

しかし、平成3年(1991年)3月22日の最高裁判決は、民法旧354条の但し書きに基づいて、 詐害的な賃借権を抵当権者が解除できることを 認めたが、同時に、その結果として無権原となった占有者を退去させる権原を抵当権者は有し ないとした²²⁾. これによって, 抵当権に基づく 妨害排除は否定され, 抵当権者による事後的な 対抗手段も失われる結果となった²³⁾. これが第二の判決である.

この二つの判決によって、抵当権者は、詐害的な短期賃借権を設定して資金を貸し付ける劣後債権者等への対抗手段を実質的に失い、短期賃借権の濫用とそれにともなう優先権侵害を助長させたと考えられる²⁴.

なお、90年頃までの不動産価格の高騰にあ わせて複数順位の抵当権が設定されたが、その 後の不動産価格の大幅な下落によって, 抵当不 動産を売却しても配当を受けられない劣後する 抵当権(無剰余の抵当権)の問題も生じた. これ は,裁判所の管理による競売が機能せず,抵当 不動産の処分が進まない状況で生じている問題 である. このような場合, 金融機関は任意売却 によって抵当不動産を売却しようとするが、そ の際, すべての抵当権を自主的に解除してもら わないと, 購入後もその抵当権が残るため買い 手が現れない、そのため、無剰余の抵当権者に まで解除のための補償金(「判子代」と呼ばれ る)を支払う必要が生じる250. このような行為 は、90年代後半の住宅金融専門会社の不良債 権処理の中でも、しばしば問題化し、今なお不 良債権処理の大きな障害の一つとなっている.

また、住宅金融専門会社の処理に際しては、政治的な介入によってメイン・バンクに過大な負担(いわゆる母体行負担)を求め、劣後する農林系金融機関の負担を軽減した。その結果、その後の企業の破綻処理などでも、メイン・バンクに過大な負担を求めようとする傾向が強まり、財務危機にある企業の借り入れをメイン・バンクが引き受けるという、いわゆる「メイン寄せ」と呼ばれる現象が広範に観察されるようになっている²⁶⁾.

そのため、推計ではこれらの法的・政治的な 影響も考慮してサンプル期間を分割して推計す る.

3. 貸出関数の推定と優先権侵害の検証 ――キャッシュ・フローに注目して――

仮説 $1\sim3$ を実証的に検証するため、サンプルを分割して、銀行の貸出関数を推定する。貸出関数は、第 i 企業に対する t 期の貸出額²⁷⁾ (Loan_{it}) 被説明変数とし、説明変数は、トービンの $q(q_{it})$ 、キャッシュ・フロー (CF_{it})、1期前の貸出額 (Loan_{it}-1) 及び定数項とする。すべての変数は対資本ストック比率に変換した。

表 1. サンプル分割による企業のタイプ

	効率的企業	非効率企業	どちらともいえない
資金不足でない	タイプ1	タイプ2	タイプ3
資金不足である	タイプ 4	タイプ 5	タイプ 6

各観測値に固有の観測されない異質性 (n_i) は、時間とともに変化しないと仮定する。また、明示的に示していないが、年ダミーを説明変数に加えてある。

 $Loan_{ii} = \alpha + \beta \cdot q_{ii} + \gamma CF_{ii} + \lambda \cdot Loan_{i,i-1} + \eta_{i} + \nu_{ii}$ 仮説検定の焦点は表 1 のようにサンプルを分割した場合にキャッシュ・フローの係数 γ の符号がどうなるかである。サンプルについては、まず 5 年ごと 28 に区切った上で、それぞれの期間において効率的な投資機会を有していたか否かで分割した。効率/非効率の判断は、各企業の ROA が平均的な企業の ROA よりも高いかどうかを基準としている。平均的な企業のROA には法人企業統計の全産業平均 29 を採用し、5 年間を通じて全産業平均を上回る場合を効率企業、下回る場合を非効率企業とした。

また、先述の仮説では、企業の資金過不足状況の相違によって、 γ の解釈が異なることを指摘した。そこで推定に際しては、資金不足の状態にあるか否かでさらにサンプルを分割している。資金不足か否かは、毎期のキャッシュ・フローが流動負債をどの程度カバーしているのかをもって判断した。具体的には、(営業利益+営業外収益+当座資産)/流動負債で定義される流動性指標 50)を作成し、この値が 1 を下回る企業について、資金不足の状況にあると判断する。この指標の値が 1 を下回ることは、キャッシュ・フローが短期の負債を下回っていることを意味するからである。

仮説は、主として資金不足企業を対象として 検証することになるが、通常のペッキング・オ ーダーの効果を確認するために、資金不足でな い企業についても推計した。

このようにサンプルを分割すると、表1にあるように、6つのタイプに分割される.

なお、先に説明したように、1990年代初頭に優先権についての重要な判例が現れた。また、90年代の後半には住専処理にともなう政治的な介入もなされた。データを5年ごとに分けているため、90年を境にした判例の効果や90年代後半の住専処理の影響も検証することができると考えられる。

3.1 対象サンプル

推計に際しては, 政策投資銀行・日本経済研

究所編「企業財務データバンク 2001」を用いた。同データベー スは、東証および地方証券取引 所の1部・2部上場企業 2599

社(上場廃止企業も含む)の決算データを1956年から2000年まで収録したものである。このうち推計では、①1977年から2000年まで決算データが揃っている企業で、かつ②決算期変更や③企業の買収・合併を実施していない企業396社(製造業264社、非製造業132社)を対象とした。

1977 年以降としたのは、当該年度より資産タイプ別の有形固定資産額のデータが入手可能となったことによる。また、恒久棚卸法を用いて実質固定資産ストックを計算する場合、ベンチマークとなる初期値を統一することが恣意性を排除するという点で望ましい。そこで推計にあたっては①の基準でサンプルを選んだ³10.決算期を変更した企業については、年度値を補完する際に恣意性が入ってしまうとの理由から排除している。③については、データの連続性が担保されないことに加え、合併・買収の前後で企業行動が変化する可能性があるためサンプルから除いている。

3.2 作成データ

推計には上記データベースの数値を利用しているが、以下の3系列については、細野・渡辺(2002)の作成方法に準拠して計算した。

【①実質(名目)固定資産ストック】

- ・建物・構築物・機械・輸送用機械・工具器 具備品・賃借用固定資産・その他償却資産 の各資産について,前期末からの増減額に 当期償却額を加えて当期の名目投資額を求 める(建設仮勘定については,当期の増減 額を建物・構築物の比率に基づき割り振 り)。
- ・各資産の名目投資額をそれぞれ対応するデフレーターで実質化し、1976年度末値の 簿価をベンチマークとした恒久棚卸法で実質固定資産ストックを作成した。各資産の償却率 ð は、小川・北坂(1998)と同様、 Hayashi and Inoue(1991)の計算結果320に基づき、建物 4.7%、構築物 5.64%、機械9.489%、輸送用機械14.7%、工具器具備品8.838%、賃借用固定資産・その他償却資産7.72%とした。

【②実質土地ストック】

・1970年をベンチマークとして恒久棚卸法

	2(2.)	, -, HO	X_170H1 =			
	サンプル数	平均	中位值	標準偏差	最大	最小
トービンタ	8712	1.63	1.22	1.58	33.96	-5.06
借入比率	8512	1.21	0.67	2.17	26.92	0.00
キャッシュ・フロー比率	8712	0.15	0.13	0.17	2.75	-2.22
社債比率	4413	0.39	0.26	0.51	11.74	0.00
ROA	8709	3.83	3.72	3.75	26.37	-18.25
資金繰り 期初	8712	1.07	0.96	0.56	6.34	-0.10
資金繰り 平均	8712	1.06	0.96	0.51	5.57	0.07

表 2 データの記述統計量

で作成した. 1970年の時価は,小川・北坂(1998)の全産業時価簿価比率 5.37 をもとに計算した.

実質土地ストック(t)

= 実質土地ストック(t-1)

 $+\frac{\pm 地資産(t)-\pm 地資産(t-1)}{$ 市街地地価指数(t-1)

実質土地ストック(70)

= 簿価実質土地ストック(70)×5.37

(③)トービンの a)

・トービンの q は以下のように定義される. 経済的償却率は、小川・北坂(1998)で全産業平均として使用されている 0.0772 を用いた.また、株価は期中最高値と最安値の平均値を用いた.

 $q=rac{($ 時価能額+負債総額-流動資産-無形固定資産-投資その他資産-繰延資産) -実質土地ストック (1-経済的償却率)×(名目固定資産ストック)

3.3 記述統計量

以上の対象サンプルと作成されたデータについて、記述統計量は表2の通りである³³⁾.

借入比率は、平均は 1.21 であるが最大は 26.92 もあり、標準偏差でも 2.17 とかなりのばらつきがある。資金繰りについては平均は 1 を上回っているが、中位値は 1 を下回っており、半分以上のサンプルで資金不足状態が観察されている。ROA は最大 26.37 から、-18.25 まで散らばっているが、平均 3.83 で標準偏差は 3.75 の範囲に収まっている。トービンのq の平均は 1.63 であり、中位値も 1.21 でサンプルの過半数は 1 を超えている。

3.4 推定式について

推定式は、被説明変数の1期ラグが説明変数となっているので、Blundell and Bond (1998)のシステム推定を行った、ソフトウエアは、DPD (Dynamic Panel Data)プログラムを利用した(Doornik, Arellano and Bond (2002)).

推定方法の基本的な考え方は、次のようなものである。まず1階の階差をとることにより、

観測されない異質性 η_i を除去する.次に、1階の階差をとると説明変数 $Loan_{i,t-1}-Loan_{i,t-2}$ と誤差項 $\nu_{it}-\nu_{i,t-1}$ の間に相関が生じるので、被説明変数の2期以上のラグを操作変数として一般化モーメント法(GMM)により推定を行う。

さらに、被説明変数の1階の

階差 $Loan_{it}$ — $Loan_{it-1}$ は,観測されない異質性 n_i と相関を持たないので,階差をとらない推定式の操作変数として使うことができる.これにより追加的なモーメント条件が得られ,有効な推定量を得ることができる.以上のように,階差を用いた推定式に被説明変数のラグを操作変数としたものと,階差を用いない推定式に被説明変数の階差を求めた操作変数を組み合わせるのが,システム推定と呼ばれる方法である.

GMM 推定は2段階で行うが、小標本では第2段階の推定における標準誤差の推定量にバイアスがあるため、小標本バイアスの修正が施されている。過剰識別制約の検定はSargan testにより行う。また、被説明変数の2期以上のラグが操作変数として適切なものであるためには、 ν_{tt} が系列相関を持ってはならない。もし ν_{tt} が系列相関を持たないなら、階差をとった ν_{tt} 一 は1次の系列相関を持つが、2次の系列相関は持たないはずである。この系列相関は,自己共分散の推定量が標準正規分布に従うという性質を使って検定できる。

なお、トービンの q は貸出額と同時に決定される内生変数であることから、操作変数を使って内生性をコントロールする。操作変数としては、従業員の平均年齢、平均勤続年数、広告宣伝費・売上高比率、試験開発費を使用した。従業員の平均年齢や平均勤続年数は、年功賃金と業内における人的資本形成を考慮すると、名と業の収益性に無視できない影響を及ぼすと考えられる。また、広告宣伝費・売上高比率は、広告宣伝費がサンクコストという性質を持つので、当該企業の商品の品質が優れていることを示すシグナルになると考えられる34、試験開発費・売上高比率も企業の成長性に影響を与えるであるう。

3.5 推定結果について

表3に、流動性とROA指標を用いてサンプリングした6つのタイプに属する企業について、

それぞれ貸出関数を推定した.推計結果は、すべてのケースにおいて過剰識別制約は棄却されず、また、誤差項の階差には2次の系列相関はない.全体として、モデルとしては妥当なものといえるであろう。

キャッシュ・フローの係数をみると, 非効率 企業で資金不足の企業(表1のタイプ5)におい ては、80年代の前半を除く3つの期間におい て、その係数はマイナスで有意であり、90年 代前後半において、それ以前の80年代後半よ り絶対値で見て大きな値となっている.他方, 非効率だが資金不足状態にない企業(タイプ2) では、キャッシュ・フローの係数はいずれも有 意ではない. 両者の結果は,優先権侵害による 追い貸し仮説を支持している. 非効率企業につ いてはキャッシュ・フローが減少していた可能 性が高いが、タイプ2の推計結果から、ペッキ ング・オーダー仮説を用いて、キャッシュ・フ ローの減少が借り入れを増やしたと説明するこ とはできない. したがって, タイプ5の企業に ついて負の係数が検出されたことは、優先権侵 害による追い貸し(仮説1)が生じていた可能性 を示す十分な証拠といえる.

これに対して, 資金不足状態にある効率的な 企業(タイプ4)については、キャッシュ・フロ - の係数が正で有意であるのは80年代後半だ けであり、この時期デット・オーバーハング (仮説2)が、タイプ4のサンプル企業に生じて いたことが示唆される. しかしその係数は90 年代の前半期には有意性は若干低いが, マイナ スに転じている. これについて, 同じ時期の資 金不足状態にない効率的な企業(タイプ1)につ いてみると、キャッシュ・フローの係数はマイ ナスだが有意ではない. したがって、ペッキン グ・オーダー仮説が示すような借り入れから内 部資金への代替は,効率性が高く資金に余裕が ある企業では、必ずしも生じていない。 したが って、この結果は、上で説明したような90年 頃に生じた優先権侵害を助長する判例の影響に よる貸し渋りと考えることができるだろう。す なわち90年代には、優先権侵害を見越したエ ージェンシー・コストの上昇が生じた可能性は 無視できない.

効率的な企業について,90年代にエージェンシー・コストによる貸し渋り(仮説3)が観察されるようになったことは,同じ時期に非効率的な企業において優先権侵害による追い貸しが深刻化したことと整合的である.

興味深いのは,効率性は必ずしも十分に高く

はない(しかし、非効率ともいえない)が、資金 に余裕がある企業(タイプ3)では、80年代後半 以降、キャッシュ・フローの係数がマイナスで 有意である点である. そのため, タイプ1の企 業では検出されなかったペッキング・オーダー 仮説が成立している可能性がある。これらの企 業では,将来追い貸しにともなう損失が発生す る可能性が高いため、もともとエージェンシ ー・コストがタイプ1企業よりも高く、借入利 子率が相対的に高くなっていたと考えられる. 他方で、このタイプ3の企業は非効率なタイプ 2企業よりは収益性もあり、資金不足にも陥っ ていなかったため、借り入れを内部資金で置き 換えることが可能であったと考えられる. 資金 不足にあったタイプ6の企業では、このような 置き換えができなかったため、キャッシュ・フ ローの係数は有意とはなっていない35)36).

なお企業サンプルを分割する効率性の指標として、qを用いた場合も推計している³⁷⁾. qのサンプル平均値を、対象期間の5年間にわたって上回る企業を効率的、下回る企業を非効率、どちらともいえない企業に分類した。すべてのケースで過剰識別制約は棄却されず、かつ、誤差項の階差には2次の系列相関はなかった。

この場合にも、タイプ4の企業で、デット・オーバーハング仮説を支持する結果は得られなかった。またタイプ5の企業では、全期間にわたって有意性は低いがその係数は負であった。特に90年代前半は10%の水準であるが有意となった。この時期、非効率だが資金不足ではないタイプ2の企業でも同水準で有意となり、ペッキング・オーダー仮説が支持されている。ただ、係数自体はタイプ5の企業の方が大きいことから、この効果を上回る追い貸しが生じていた可能性が高い。

興味深いのは、効率的か非効率的かに分類できなかった資金不足企業(タイプ6)でも、90年代前半に、キャッシュ・フロー比率がマイナスで有意になったことである(資金不足状態にないタイプ3の企業では有意ではない). この結果は、少なくともデット・オーバーハング仮説を支持する結果ではない. 代わりに非効率な追い貸しや、エージェンシー・コストの上昇による貸し渋りなどの仮説を支持するものといえる.

ROA によるサンプル分割のケースとの比較から、指標によって企業が効率的か否かの判定が異なり、実証結果がその影響を受けてしまったことが分かる。これはトービンの q の計算で企業の置き換え費用等を算出する場合に、簿価

表3. 貸出関数の推定結果

		被説明変数1期	b	サッシュ・フロ		80 年代 Sargan 検定統計量 前半		AR(2)検定統計量	観測値数	企業数	被說明変数1期ラ	b	キャッシュ・フロ	定数項	80 年代 Sargan 検定統計量 後来		AR(2) (快) (本)	観測値数	企業数	被說明変数1期	b	X		90 年代 Sargan 檢定統計量		AR(2)検定統計量	観測値数	企業数	被説明変数1期ラグ		п С. т,		90 平17 Sargan 検定統計量 後半		AK(2) 使压机計画	観測値数
		7 7		一比譽							ラグ		一工棒							ラグ		ュ・フロー比率 -			in the same of the				7 %	'	一比譽					
	係数	0.813	0.004	-0.601	0.160	3hi^2(137	V(0,1) = -	V(0,1) = -	461	78	0.782	800.0	-0.156	0.123	3hi^2(137	V(0,1) = -1	I = (I, U) = I	411	71	0.844	-0.012	-0.014	0.048	7hi^2(137	V(0,1) = -	V(0,1) = -	310	53	0.816	-0.016	0.106	0.026	?hi^2(137	V(0,1) = -1	$I = (I, 0) \times I$	266
type 1	標準誤差	0.039	0.007	0.286	0.087	$Chi^{\wedge}2(137) = 68.47[1.000]$	$N(0,1) = -2.745[0.006]^{**}$	N(0,1) = -1.556[0.120]			0.043	0.012	0.129	0.041	7)=60.42[N(0.1) = -3.337[0.00]	17.07167.			0.012	0.015	0.170	0.029	$Chi^2(137) = 40.67[1.000]$	N(0,1) = -1.455[0.146]	N(0,1) = -0.9712[0.331]			0.055	0.013	0.159	0.023	7)=31.44[-2.702[0.0	IN(0,1) = 1.948[0.051]	
	p 値	00:00	0.58	0.04	0.07	1.000]					00.00	0.50	0.23	0.00	1.000]	1 "[100				0.00	0.45	0.94	0.11	1.000]					00.00	0.23	0.51	0.26	1.000]	1 **[700		
	係数	0.325	0.224	-1.130	0.776	Chi^2(13;	N(0,1) = -	N(0,1) = -	62	11	0.867	-0.084	1.539	0.052	Chi^2(13;	N(0,1) = -1	N(0,1) = 1	249	42	0.760	-0.027	0.293	0.150	Chi^2(137	N(0,1) = -	N(0,1) = -	206	35	0.804	-0.087	690.0-	0.315	Chi^2(13,	N(0,1) = -	N(0,1) = (1,0)N	177
type 2	標準誤差	0.664	1.264	8.856	0.690	$Chi^{\wedge}2(137) = 1.533[1.000]$	N(0,1) = -0.4556[0.649]	N(0,1) = -1.015[0.310]			0.054	0.051	1.725	0.381	7) = 28.45	$N(0,1) = -3.337[0.001]^{**}$ $N(0,1) = -1.422[0.155]$	IN(0,1) = 1.400[0.100]			0.068	0.050	0.284	0.146	7)=20.68	$N(0,1) = -1.331 \big[0.183 \big]$	$\mathcal{N}(0,1) = -1.630 \big[0.103 \big]$			0.063	0.100	0.297	0.207	7) = 21.16	$N(0,1) = -2.702[0.007]^{**}$ $N(0,1) = -1.385[0.166]$	N(0,1) = 0.2113[0.833]	
3	か値	0.63	98.0	06.0	0.27						0.00	0.10	0.37	68.0	[1.000]					0.00	0.59	0.30	0.31	[1.000]					0.00		0.82	0.13	[1.000]	SHAFE		
ŽĮ.	係数	0.840	-0.060	0.285	0.045	$\text{Chi} ^{\wedge} 2 (137) = 53.41 \big[1,000 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 33.84 \big[1,000 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 62.71 \big[1,000 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 106.5 \big[0.975 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 106.5 \big[0.975 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 106.5 \big[0.975 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 106.5 \big[0.975 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 106.5 \big[0.975 \big] \\ \text{Chi} ^{\wedge} 2 (137) = 106.5 \big[0.975 \big] \\ \text{Chi} ^{\wedge} 3 (137) = 106.5 $	N(0,1) = -1.673[0.094]	N(0,1) = 0.5245[0.600]	387	92	1.032	0.019	-2.034	0.242	$\text{Chi} \land 2 (137) = 60.42 [1.000] \text{ Chi} \land 2 (137) = 28.45 [1.000] \text{ Chi} \land 2 (137) = 82.25 [1.000] \text{ Chi} \land 2 (137) = 9.694 [1.000] \text{ Chi} \land 2 (137) = 50.37 [1.000] \text{ Chi} \land 2 (137) = 1.06.2 [0.976] \text{ Chi} \land 3 (137) = $	N(0,1) = -1.375[0.169]	N(0,1) = 0.7001[0.444]	533	91	0.593	0.041	-1.021	0.233	$\text{Chi} \land 2 (137) = 20.68 [1.000] \text{ Chi} \land 2 (137) = 90.53 [0.999] \text{ Chi} \land 2 (137) = 13.21 [1.000] \text{ Chi} \land 2 (137) = 43.28 [1.000] \text{ Chi} \land 2 (137) = 119.4 [0.858] \text{ Chi} \land 3 (137) = 119.4 [0.858] Ch$	$\mathcal{N}(0,\!1) = -1.550 \big[0.121 \big]$	N(0,1) = 0.9079[0.364]	280	66	1.025	0.024	-0.384	690.0	$\text{Chi} \land 2 (137) = 31.44 [1.000] \\ \text{Chi} \land 2 (137) = 21.16 [1.000] \\ \text{Chi} \land 2 (137) = 85.94 [1.000] \\ \text{Chi} \land 2 (137) = 17.08 [1.000] \\ \text{Chi} \land 2 (137) = 17.13 [0.828] \\ \text{Chi} \land 2 (137) = 17.08 [1.000] \\ \text{Chi} \land 2 (137) = 17.13 [0.828] \\ \text{Chi} \land 3 (13$	$N(0,1) = -3.117[0.002]^{4*} N(0,1) = -1.327[0.185]$	IN(0,1) = -0.8992[0.369]	505
type 3	標準誤差	0.044	0.049	0.394	0.106	7) = 53.41	-1.673[0.	.5245[0.6			0.042	0.029	0.984	0.178	7) = 82.25	-1.375[0.	7.7001[0.4			0.068	0.031	0.407	0.063	7) = 90.53	-1.550[0.	0.9079[0.3			0.050	0.019	0.177	0.042	7) = 85.94	-3.117[0.	-0.8992[1	
2	p 値		0.23	0.47	89.0	[1.000]					00.00	0.51	0.04	0.17	[1.000]						0.19		00.00	[666.0]					0.00		0.03	0.10	[1.000]	002]**		
	係数	0.596	-0.006	-0.637	0.380	Chi^2(13	N(0,1) =	N(0,1) =	252	42	9220	0.128	9.242	-1.465	Chi^2(13	N(0,1) =	N(0,L) =	132	22	1.134	-0.145	-1.017	0.335	Chi^2(13	N(0,1) =	N(0,1) =	162	27	0.937	0.116	0.499	-0.131	Chi^2(13	N(0,1) =	N(0,1) =	152
type 4	標準誤差	0.078	0.024	0.517	0.072	(7) = 33.84	$N(0,1) = -2.667[0.008]^{**}$	N(0,1) = -0.6826[0.495]			960.0	0.152	2.505	0.385	+69.6 = (2)	N(0,1) = -0.9822[0.326]	IN(0,1) = -1.051[0.293]			0.029	0.107	0.570	0.261	(7) = 13.21	$N\left(0,1\right) = -1.150 \big[0.250\big]$	N(0,1) = 1.015[0.310]			0.035	0.080	1.210	0.163	(7) = 17.08	-1.327[0	N(0,1) = -1.043[0.297]	
	<i>p</i> 値			7 0.22	00.00	1[1.000]					0.00	0.40	00.00	0.00	[[1.000]					00:00	7 0.18	80:0	0.20	[[1.000]					00.00		89.0 (3 0.42	3[1.000]			
	係数	1.011	-0.021	1.375	-0.535	Chi^2(13	N(0,1) =	N(0,1) =	420	70	0.993	-0.024	-0.305	0.179	Chi^2(13	N(0,1) =	N(0,1) =	324	54	0.774	-0.058	-0.932	609.0	Chi^2(13	N(0,1) =	N(0,1) =	282	47	0.912	-0.299	-0.536	0.526	Chi^2(13	N(0,1) =	N(0,1) = 1	388
type 5	標準誤差	0.063	0.138	0.889	0.293	(7) = 62.71	N(0,1) = -1.356[0.175]	N(0,1) = -1.804[0.071]			0.055	0.068	0.143	0.137	(7) = 50.37	N(0,1) = -1.365[0.172]	N(0,1) = -0.3936[0.694]			0.079	0.120	0.443	0.324	7) = 43.28	N(0,1) = -1.611[0.107]	$\mathcal{N}\left(0,1\right) = -0.2224 \big[0.824\big]$			0.039	0.143	0.236	0.224	7) = 63.23	$N(0.1) = -2.376[0.018]^*$	N(0,1) = 0.3419[0.732]	
	p 値				0.07	[1.000]					00.00	0.73	0.03	0.19	[1.000]					0.00	0.63	0.04	90.0	[1.000]					00.00		0.02	0.02	[1.000]		32]	
	係数	0.922	0.040	-0.783	0.037	Chi^2(1;	N(0,1) =	N(0,1) =	292	128	0.944	-0.035	-0.310	0.109	Chi^2(1)	N(0,1) = -1.865[0.062]	N(0,1) =	099	110	0.682	0.197	-0.521	-0.033	Chi^2(18	N(0,1) = -1.212[0.226]	N(0,1) =	268	129	0.935	_	-0.101	0.159	Chi^2(1)	N(0,1) = -1.429[0.153]	N(0,1) =	770
type 6	標準誤差	0.026	0.070	0.511	0.107	37) = 106.9	N(0,1) = -1.673[0.094]	N(0,1) = -0.4797[0.631]			0.042	0.037	0.735	0.137	37) = 106.2	-1.865[0	IN(0,1) = -1.602[0.109]			0.120	0.177	1.733	0.255	37) = 119.4	-1.212[(-1.546[0.122]			0.076	0.158	0.935	0.299	37) = 121.3	-1.429[0	N(0,1) = 0.2640[0.792]	
	り値				0.73	5[0.975]	.094]	0.631]			00:0	0.34	79.0	0.43	[0.976]	[790]	1091			0.00	0.27	92.0	06.0	[[0.858]]	.226]	.122]			0.00	0.82	0.91	09.0	[0.828]	.153]	[76,	

経

済

研

究

表 4. 貸出関数の推定結果(含む社債)

				,			C			0			V Comman			LG CG			A court	
			1	type I			type 2				1		type 4			c addı			cype o	
##の				標準誤差	p 値				- 1		<i>b</i> 値		票準誤差	り値		票準誤差	p 値		票準誤差	り値
***・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		被説明変数	0.840	0.061	0.00	0.000	0.000	0.00	0.868	0.051	0.00	0.648	0.229	0.01	1.042	0.104	0.00	0.869	0.007	0.00
#### # - 0.23		b	0.004	0.014	08.0	0.008	0.000	0.00	-0.015			-0.046	0.229	_	-0.458	0.202	0.03	-0.042	0.047	0.37
### 19		キャッシュ・フロー比率		0.320	0.31	0.002	0.000	0.00	-0.366		_	-1.215	1.152		-0.135	2.822	96.0	-0.909	0.676	0.18
ないの (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		补信比率		0.070	89.0	0.002	0.000	0.00	0.127			-0.424	0.801	09.0	1.537	0.269	0.00	0.557	0.171	0.00
	80 年4	定数項	0.085	0.095	0.38	0.010	0.000	0.00	0.093		0.46	0.517	0.269	0.06	-0.100	0.653	0.88	960.0	0.120	0.43
RKE2 砂電電影音 N(0.1) = -25 i [10.0099] Not crossiph observations N(0.1) = -215 [10.0091] N(0.1) = -1.085 [10.0092] N(0.1) = -2.487 [10.0092] N(0.1) = -2.887 [10.0092] N(0.1)	計	Cardan なかな中間	Chi^2(15)	6)=26.85	1000	7hi^2(25)=	3136e+012[0	**[000	Chi^2(156	3 = 21.33[1]		7hi^2(156) = 5.253[]	000	2hi^2(156) = 10.74		Chi^2(156) = 32.33	1.000]
## 17 19 25 25 25 25 25 25 25 25 25 25 25 25 25	-	ADCI 李代将毕申	NO1) -	-9611500	** LOO	Not opough	obcorrations	1	N(01) ==	-9154F003		T(01)=-	-1038[0.96	101	1(01)=-	-1155[02		N(0.1) = -	-2123500	347*
		AK(I) (快水机引車)	IN(U,L) —	1.000[0.0		INOL EHOUGH	observations		IN (U, I) =	1 407[016		1(01)	0.440950.4			0.000000	_	N(01)	1118	
接続明度数 256 166 006 006 0078 0125 0127 0070 0641 022 007 1138 0220 057 166 0738 0230 013 013		AR(Z)	= (1.0) N	-1.033[U.		Not enough	observations		(T'O) N	- 1.407 LU.10		- (T'()) N	-0.4405LUA			U.3009LU.		1 (1'O) VI	1.110[0.4	7.50
接換機能能		観測值数	205			2			179			96			100			747		
## 1		企業数	41			П			36			17			19			47		
### 1975		被許田容数	6060	0.066	0.00	0.782	0.127	0.00	0.641	0.032	0.00	0.138	0.429	0.75	1.064	0.032	00.0	0.918	0.043	0.00
・******************************		0	0.014	0.012	0.26	-0.038	0.034	0.26	-0.001	0.030		-0.051	0.172	0.77	-0.158	0.070	0.03	-0.248	0.209	0.24
		まっシュ・フロー 上述	- 1	0335	0.44	-0010	1.063	060	2090-	0.416		1 875	2.210	0.40	1476	1,475	0.32	0.957	1.065	0.37
ARC1) Pack 表 ARC2 Pack & ARC2		7 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0.02	0.94	0.254	0.102	0.01	0.024	0.034	0.49	0.635	0.538	0.24	-0.523	0.339	0.13	1.094	0.745	0.14
ARC1)接流機構業 Chri2(156)=444[1000] Chri2(156)=1486[11000] Chri2(156)=1382[1000] Chri	47 # VO	正成五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	0.001	0.010	0.01	0.193	0.211	0.36	0.281		0.01	0102	0.576	980	0.270	0.256	0.30	0.000	0.113	1.00
N(0.1) = -2.842[0.0.5] N(0.1) = -2.842[0	21+100	人然女 人然女	0.002	JON ON - (2	1 000 1	O.1.0	T15.40F1 000T		75.00 (15G	171981-13		14: A9 (156	7=1103	LUUU	15/07/156	1359	1 000	ChiA9 (156	3363	1 000
AR(1) 競売機構量 N(0.1) = -2.442[0.015] N(0.1) = -0.731[0.444] N(0.1) = -1.145[0.236] N(0.1) = -0.666[0.548] N(0.1) = -0.472[0.444] N(0.1) = -1.145[0.236] N(0.1) = -0.666[0.548] N(0.1) = -0.471[0.444] N(0.1) = -1.145[0.236] N(0.1) = -0.666[0.548] N(0.1) = -0.471[0.444] N(0.1) = -1.145[0.236] N(0.1) = -0.666[0.548] N(0.1) = -0.771[0.444] N(0.1) = -0.171[0.444] N(0.1) =	(ダナ	Sargan 传天机計画	CI)2//II)	1240.421	LUUU.I	Cni ² Z(156)	=15.49[1.000]		CIII. 2(130	0074500		OUT 2 TH) - 1.135L	יביטטטיו	7(01)	120.01 - (L'000.1	VI 2/10/	1 971 [0 1	L000.1
機能機能 (2.5) (2.5		AR(1)検定統計量	N(0,1) =	-2.442[0.0		N(0,1) = -1	149[0.251]		N(0,1) = -	-2.874[0.00	_	V(0,1) = 0	.3809[0.70]	-	-=(1.0)N	-1.802LU.C		N(0,1) = -	-1.3/1[0.1	[0/
## 12 23		AR(2)検定統計量	N(0,1) = 0	-0.8653[0		N(0,1) = -(0.7317[0.464]		N(0,1) = -	-1.185[0.2]		$\Lambda(0,1) = -$	-0.6008[0.		N(0,1) = -	-0.7719[0.	440]	N(0,1) = 0	.1341[0.89	33
## 25		観測値数	239			142			319			89			121			203		
接続時候数		企業数	52			29			99			13			25			43		
事業を表表 の15 0.025 0.53 一の17 0.042 0.69 0.044 0.00 一の48 0.083 0.61 一0.309 0.014 0.00 一0.048 0.081 0.012 0.012 0.013 0.023 0.0248 0.014 0.00 0.0248 0.031 0.0248 0.037 0.02 0.137 0.02 0.030 0.02 0.037 0.02 0.037 0.02 0.037 0.02 0.037 0.03 0.02 0.037 0.03 0.02 0.03 0.04 0.09 0.04		被説明変数	0.700	0.032	0.00	0.750	0.103	0.00	0.525	0.110	0.00	1.015	0.099	0.00	0.760	0.098	0.00	0.733	0.208	0.00
接換機能 (表) (15) (15) (15) (15) (15) (15) (15) (1		a	0.015	0.025	0.53	-0.017	0.042	69.0	0.039	0.014		-0.048	0.093		-0.309	0.122	0.01	0.190	0.175	0.28
建模車 0016 0.053 0.76 0.187 0.06 0.06 0.76 0.48 0.32 0.31 1.36 0.77 0.03 0.724 0.729 定数項 0.015 0.028 0.03 0.029 0.164 0.049		キャッシュ・フロー比率		0.300	0.18	090.0	0.248	0.81	-0.850	0.350		-1.317	1.416		-0.838	1.035	0.42	-2.160	0.912	0.02
定数值 0.125 0.058 0.03 0.16f 0.90 0.104 0.049 0.04 0.130 0.282 0.65 0.872 0.93 0.024 0.159 Sargan 検定統計量 O.125 0.058 0.03 0.16f 0.14 0.049 0.04 0.130 0.282 0.65 0.872 0.03 0.02 0.14 ARC1) 検定統計量 N(0.1) = -0.8343[0.404] N(0.1) = -1.942[0.052] N(0.1) = -1.942[0.052] N(0.1) = -1.005[0.315] N(0.1) =		补借比率	T-021110	0.053	92.0	0.255	0.137	90.0	0.181	0.022	0.00	909.0	0.762	0.43	0.488	0.320	0.13	1.362	0.770	0.08
AR(1)檢定統計量 Chiv2(156)=15.34[1.000] Chiv2(156)=69.65[1.000] Chiv2(156)=5.478[1.000] Chiv2(156)=17.22[1.000] Chiv2(156)=17.22[1.000] <th>ON 17-4P</th> <th>定数五</th> <th>0.025</th> <th>0.058</th> <th>0.03</th> <th>0.020</th> <th>0.161</th> <th>06.0</th> <th>0.104</th> <th>0.049</th> <th>0.04</th> <th>0.130</th> <th>0.282</th> <th>0.65</th> <th>0.872</th> <th>0.397</th> <th>0.03</th> <th></th> <th>0.219</th> <th>0.27</th>	ON 17-4P	定数五	0.025	0.058	0.03	0.020	0.161	06.0	0.104	0.049	0.04	0.130	0.282	0.65	0.872	0.397	0.03		0.219	0.27
	計場	Cardan 格识探中區	Chi^2(15	6)=3931		Chi^2(156)	=15.34[1.000]		Chi^2(156	3)=6965[]		7hi^2(156	1)=5.478		Chi^2(156	3 = 17.52	1.000	Chi^2(156	5) = 78.64	1.000
19 19 19 19 19 19 19 19	7	AD(1) 松小松山 年	N(01)=	-0.83/13[G	LOOP	N(0.1) = -1	942[0.652]		N(01)=-	-1 392[0 16		1(01)=-	-1005[03		7(01)=-	-1409[0]	597	N(0.1) = -	-1.058[0.5	L068
 (表数) (本表数) (本表数) (本表数) (本表数) (本表数) (本表数) (本本本) シェッフ = 上本 (力247 (力262 (力262<th></th><th>AR(2) 檢完統計量 AR(2) 檢完統計量</th><th>N(01)=(</th><th>0.0345[0</th><th></th><th>N(0.1) = -(</th><th>0.6283[0.530]</th><th></th><th>N(0.1) = 0</th><th>1811810417</th><th></th><th>(0.1) = 1</th><th>106[0.269</th><th></th><th></th><th>-0.7114[0</th><th></th><th></th><th>-1.098[0.2]</th><th>272</th>		AR(2) 檢完統計量 AR(2) 檢完統計量	N(01)=(0.0345[0		N(0.1) = -(0.6283[0.530]		N(0.1) = 0	1811810417		(0.1) = 1	106[0.269			-0.7114[0			-1.098[0.2]	272
接続明変数		報測值数	247	0		165			418			111					ii.			
接続的変数 0.762 0.078 0.00 0.860 0.365 0.03 1.037 0.077 0.00 0.199 0.569 0.04 0.816 0.048 0.09 0.059 0.859 0.059 0.859 0.059 0.859 0.055 0.109 0.126 0.126 0.124		企業数	46			30			78			21			56			83		
4 -0.020 0.019 0.29 0.026 0.34 0.06 0.034 0.07 0.08 0.017 0.018 0.24 3.934 1.00 -0.586 0.165 0.09 0.85 0.015 0.05 0.07 0.07 0.09 0.024 3.934 1.00 -0.586 0.165 0.00 -0.761 3.555 0.83 -0.034 0.174 0.00 1.526 0.578 ARQLY 0.03 0.077 0.97 0.192 0.443 0.67 0.038 0.18 0.247 1.120 0.83 0.051 0.78 0.234 0.174 0.11 0.188 0.234 ARQLY 0.046 0.72 0.046 0.72 0.046 0.73 0.046 0.78 0.046 0.78 0.046 0.78 0.046 0.18 0.051 0.78 0.279 0.174 0.11 0.406 0.18 ARQLY 0.051 0.052 0.038 0.10 0.075 0.077 0.017 <		被説明変数	0.762	0.078	0.00	0.800	0.365	0.03	1.037	0.077	0.00	1.199	0.569	0.04	0.816	0.048	0.00	1.048	0.039	0.00
接債比率 0124 0191 052 0443 067 070 070 070 070 070 070 070 070 070		В	-0.020	0.019		990.0—	0.364	98.0	0.017	0.018		-0.056	0.299	0.85	-0.195	0.153	0.20	0.119	0.126	0.35
接債比率 0.003 0.77 0.97 0.97 0.83 0.83 0.81 0.064 0.038 0.18 0.247 1.120 0.83 0.351 0.185 0.06 0.188 0.234 定数項		キャッシュ・フロー比率		0.191		0.024	3.934	1.00	-0.586	0.165		-0.761	3.555	0.83	-0.634	0.174	00.0	1.526	0.578	0.01
定数項 0017 0.046 0.72 0.083 0.335 0.81 0.064 0.038 0.10 0.150 0.521 0.78 0.174 0.11 Sargan 檢定統計量 Chi-2(156)=23.83[1.000] Chi-2(156)=9.638[1.000] Chi-2(156)=61.87[1.000] Chi-2(156)=11.70[1.000] Chi-2(156)=33.22[1.000] AR(1)檢定統計量 N(0.1)=-2.428[0.015]* N(0.1)=-0.107[0.920] N(0.1)=-2.503[0.012]* N(0.1)=-1.290[0.165] N(0.1)=-2.004[0.045]* AR(2)檢定統計量 N(0.1)=1.934[0.053] N(0.1)=0.5294[0.597] N(0.1)=-0.1544[0.877] N(0.1)=-1.390[0.165] N(0.1)=-0.2741[0.784] 40 33 18 71 18 40		社債比率		0.077	0.97	0.192	0.443	29.0	0.051	0.038		-0.247	1.120	0.83	0.351	0.185	90.0	0.188	0.234	0.42
Sargan 檢定統計量 $Chi^{\wedge}2(156) = 23.83[1.000]$ $Chi^{\wedge}2(156) = 9.638[1.000]$ $Chi^{\wedge}2(156) = 61.87[1.000]$ $Chi^{\wedge}2(156) = 33.22[1.000]$ $AR(1)$ 檢定統計量 $N(0.1) = -2.428[0.015]$ $N(0.1) = -0.107[0.920]$ $N(0.1) = -2.503[0.012]$ $N(0.1) = -1.027[0.304]$ $N(0.1) = -2.428[0.053]$ $N(0.1) = -0.1544[0.877]$ $N(0.1) = -1.390[0.165]$ $N(0.1) = -0.2741[0.784]$ 80 161 80 71 18 40	on 年代	定数項	0.017	0.046		0.083	0.335	0.81	0.064	0.038	0.10	0.150	0.521	0.78	0.279	0.174	0.11	-0.406	0.187	0.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	※ 米	Saroan 格印塔中昌	Chi^2(15	6) = 23.83	710001	Chi^2(156)	=9638[1000]		Chi^2(156	5) = 61.87	1,000 T	7hi^2(15¢	3)=11.70	1.0001	Chi^2(156	;) = 33.22[1.000]	Chi^2(15)	5) = 70.39	1.000]
		AR(1)格印統計量	N(01)=	-2428[01	1157*	N(0.1) = -(1.1007[0.920]		N(0.1) = -	-2.503[0.0]		V(0.1) = -1	-1.027[0.3	04]	N(0,1) = -	-2.004[0.0)45]*	N(0,1) = -	-2.256[0.0])24]*
161 80 335 94 181 33 18 71 18 40		AR(2)檢定統計量	N(0.1) =	1.934[0.05.		N(0,1) = 0.5	294[0.597]		N(0,1) = -	-0.1544[0.8]		V(0,1) = -	-1.390[0.1		N(0,1) = -	-0.2741[0	[784]	N(0,1) = -	0.8369[0	.403]
33 18 71 18		観測値数	161			80			335			94			181			384		
		企業数	33			18			71			18			40			77		

を利用せざるを得ないことに起因しているのかもしれない。土地については、その上昇率を調整して計算したが、適切な指標とはならなかった可能性がある³⁸⁾。

さらに、ROA による分割では、法人企業統計から資本金 1 億円以上の全業種平均を求め、それを基準に分割したが、q については収集したサンプル平均を基準にした。したがって、q の場合には、効率的かどうかを判断する平均値自体がバイアスを持っているかもしれない。これらの要因が、q を用いた分割における推計の頑健性をうばっている可能性がある。

ただし、その場合でもデット・オーバーハングの存在を支持する結果は観察されない。得られた有意な結果はすべて、優先権侵害による追い貸しや、エージェンシー・コストの上昇による貸し渋り仮説に有利な証拠といえる。

本稿では、操作変数を用いてqの内生性についてはコントロールしているが、qの算出の際に生じる測定誤差のために、破綻確率などは十分に反映されていない可能性がある。もちろん銀行が貸し出しをする際には、当然企業の破綻リスクを重視すると考えられる。したがって、いま述べたようなqの測定誤差の問題点を考慮して、ROAによるサンプル分割をした推計の頑健性を確認するために、表3の推計式に破錠確率を反映すると考えられる純資産総負債比率(純資産/総負債)を加えた推計も実施した390.この推計では、タイプ4の90年代前半におけるキャッシュ・フローの係数の有意性が若干低下したが、それ以外は、係数の有意性に大きな影響は生じなかった400.

3.6 社債との代替関係

本稿の仮説を社債との代替関係を考えることで、別の角度からの検証も行っている。用いたサンプルは上場企業であるため、社債を発行している企業も少なくない。そこで、社債との代替関係を含めて優先権侵害やデット・オーバーハングの影響を考えてみよう。優先権侵害がある場合、資金不足状況にある非効率企業(タイプ5)では、キャッシュ・フローが増加すると、既存の銀行借り入れや社債の返済に充てられる。その結果、企業の既存の負債は減少するが、それによって、優先権侵害に伴う所得移転も減るこれらの効果は全体として銀行貸し出しと社債のいずれをも減少させる。したがって両者には正の相関があることになる。

他方,デット・オーバーハングが存在する場合には,資金不足状況にある効率的な企業(タイプ4)では,キャッシュ・フローが増えれば,既存の社債や銀行貸し出しは減るが,結果として新規融資が増加し,全体としては企業の負債は増加する。もし銀行から新規の融資が得られれば,社債は減少するのに対し銀行借り入れは全体として増加する。他方,社債によって外部の投資家が資金を提供すれば,銀行借り入れが減る一方で,社債は増加しているはずである。したがって,銀行貸し出しと社債の間には代替的な関係が成立し,負の相関が見いだされるだろう。

効率的で資金不足状態にない企業(タイプ1)では、ペッキング・オーダー仮説が成り立つとすると、社債の方がエージェンシー・コストが高いので、キャッシュ・フローの増加は、負債を増やさずに追加投資に回されるか、あるいはまず社債を減らした後で銀行借り入れを減らすことになる。したがって、銀行貸し出しと社債は相関がないか、あるとすれば正の相関となる。

3.7 社債を導入した推計結果

表4では、表3の推計に社債比率(社債発行 残高の対資本ストック比率)を含めて推計した. ただし、タイプ2企業の80年代前半について はサンプル数が少なく妥当な結果が得られなか ったが、それ以外は過剰識別制約は棄却されず、 かつ、誤差項の階差には2次の系列相関はなか った.

全体としては、社債との関係を基に検証した 実証結果は、キャッシュ・フローと社債発行の 多重共線性の影響が強く影響し41),表3の実証 結果と比較してキャッシュ・フローの係数の有 意性が消滅したものも多い. ただし, デット・ オーバーハングの可能性を示唆する結果は、90 年代後半のタイプ6の企業のキャッシュ・フロ -の係数のみで、社債の係数について有意な結 果は得られなかった. 他方,優先権侵害による 追い貸しの有無を検証するタイプ5の企業の 90年代後半(この時期以降,追い貸しの問題が 広く指摘されるようになった)においては、キ ャッシュ・フローの係数も社債の係数のいずれ も,優先権侵害による追い貸しが生じていた可 能性を強く検出した. またタイプ3企業の90 年代前半においては、ペッキング・オーダー仮 説と合致する結果を見出した.

多重共線性の影響をさらにコントロールする 必要が残っているが、少なくとも全体としては、 デット・オーバーハングを示唆する結果は得られず,むしろ90年代に優先権侵害が銀行の貸し出し行動に一定の影響を及ぼしていた可能性を示唆する結果となった.

4. 結論

これまで、優先権侵害が貸出関数に対して有意な影響を及ぼすかどうかに焦点をあてて、貸し渋りや追い貸しが生じているかどうかを検証した。ROAと流動資産比率を用いて、6つのタイプの企業にサンプルを分割したうえで、各タイプについて、銀行貸出関数を推計した。

主要な実証結果(表3)を要約すると,第一に,80年代,90年代を通じて優先権侵害による追い貸しが生じたとする仮説と整合的な結果が得られた。第二に,デット・オーバーハングによる貸し渋りは限定的で,80年代の後半の一期間以外のいずれの期間でも観察されなかった。むしろ,優先権侵害を含むエージェンシー・コストの増大が,貸し渋りを招いたとする仮説と整合する結果が得られた。

ここで注目されるのは、デット・オーバーハングによる貸出関数への影響である。新しいプロジェクトからの収益が既存の残債務へ流出する結果、貸し渋りを招くとする議論は、あまりにもナイーブすぎるように思われる。この議論は、新規の債権者から既存の債権者に対して、収益のスピル・オーバーが発生していることを意味している。こうしたスピル・オーバーは外部性そのものであるから、既存の債権者が新しいプロジェクトに対して、自ら追い貸しを行うことによって、外部効果を内部化することが可能である422。

したがって、ここでの実証の結果で、デッド・オーバーハングによる貸し渋りが十分に検出されなかったということは、こうした既存の債権者による効率的な追い貸しがうまく機能していたと言えるのかもしれない。しかし、日本の企業に対する追い貸しが、全て効率的な結果であったということを、ここでの実証結果は示していない。むしろ優先権侵害によって非効率な追い貸しや貸し渋りが発生していたことが80年代の後半、90年代の前後半を通じて観察される。このことから、優先権侵害が貸出市場に深刻な影響を及ぼしている可能性が高い。

この主要な結果は、表3の推計に倒産確率やレバレッジの影響などを反映すると思われる純資産総負債比率(純資産/総負債)などを加えた推計でも維持された頑健なものであった。また、

推計上の問題によって有意性が低くはなったが、デット・オーバーハングよりも優先権侵害仮説に有利な証拠は、qを基準にした効率性判断や社債との代替関係を含めた推計結果でも確認された。

本稿の議論に対して、優先権侵害があるのに、なぜ日本では抵当権に依存した貸し出しが実施されているのかという疑問が提示される。その問いには、次のように答えることができる。第一に、抵当権自体には、債務者による資産処分を制限できるなどの別の有用な機能がある。第二に、企業の在庫などを利用した譲渡担保などの代替的な担保制度については、法律が未整備なため、十分に利用できる法制度が準備されていない点が挙げられる。

ただし、厳密には日本の銀行貸し出しは必ずしも抵当権に依存してきたわけではない.本当に抵当権だけに依存した貸し出しがされているのであれば、担保資産の価値だけに依存したノンリコース・ローンが中心になるはずである.しかし、実態はリコース・ローンが主流なだけでなく、中小企業などでは経営者に個人保証まで求めた貸し出しが支配的である.このことは、抵当権が担保としては十分に機能しておらず、それを補完する必要があったことを意味している

なお、本稿の実証分析では、銀行の貸し出し供給関数を推計しているが、q の係数が負であることから、需要要因を十分に取り除くことができていない可能性がある。実証自体は操作変数法を使っているが、操作変数が誤差項と相関を持つ可能性は排除できないので、さらに適切な操作変数の選択は今後の課題である 43 . さらに、サンプル分割の際に論じたようにq 自体の推計値の確度の問題が残っている。これらについては、今後さらに検証を進めたい.

本稿では1977年から2000年まで決算データが揃っている企業を対象としたことから、資金需要の旺盛な新興企業がサンプルに含まれていない。また資金不足状態にあり、貸し渋りなどの生じやすい中小企業なども含まれていない。そのため実証結果にバイアスを生じている可能性は否定できない。また、本稿の前提となっている理論モデルでは追加投資の効率性の問題を扱っているが、実証分析では企業全体の効率性でサンプルを分割している。この点で、実証分析は理論モデルと十分に整合的なものとは言えないかもしれない。

さらに本稿の分析では扱わなかった Peek

and Rosengren (2003) や Hosono and Sakuragawa (2003) が指摘するような銀行の会計操作を原因とする追い貸しの可能性もコントロールした上で,優先権侵害の影響を検証する必要があるだろう.

これらの問題については今後の課題としたい。 (投稿受付 2006 年 12 月 6 日・最終決定 2010 年 6 月 9 日,上智大学経済学部・専修大学商学部・みずほ総合研究所・内閣府経済社会総合研究所)

注

- 1) 本稿の作成にあたっては、柳川範之、福田慎一 (共に東京大学)および腎鵬(法政大学)の各先生方はじめ東京大学金融教育研究センター・日本銀行調査統計局第2回共催コンファレンスの参加者から有益なコメントを頂いた。また、二人の査読者からも多くの有益なコメントを頂いた。この場を借りて謝意を表したい。もちろんありうべき誤りはすべて著者らの責任に帰するものであることは言うまでもない。なお本稿の基礎となる研究に対しては、財政・金融・金融法制研究基金から研究助成を受けている。
- 2) 住宅金融専門会社の破綻処理の際には、本来劣後している農林系金融機関の債権を優先的に弁済すべきであるという政策的な介入も生じた. La Porta et al. (1998)は、各国の法律や資金市場のルールを採点して、大陸法(市民法)の影響の強い国では、債権者保護の程度が弱いために、金融・資本市場の資金量が低いことが明らかにされている。興味深いのは政治的な介入によって、債権者の権利が歪められることがあるかどうかも、ひとつの採点の基準になっている点である.
- 3) アメリカの優先権侵害についての実証や議論については Eberhart, Moore and Roenfeldt(1990) や Eberhart and Weiss(1998)などを参照。ただしこれらは、債権者による自主的な債権放棄も優先権侵害に含まれており、本稿が考えている司法や政治的な介入による優先権侵害の問題とは異なる点には注意が必要である。
- 4) 近年の日本の銀行行動については、Peek and Rosengren (2003) 等を参照
- 5) デット・オーバーハングの問題については Myers (1977)参照.
- 6) 本稿では瀬下・山崎(2004)の用語の定義に従い、優先債権者から劣後する債権者に所得移転を強制的に生じさせるような状況がある場合を「優先権侵害」と呼んでいる。このため、債権者と株主(あるいは経営者)間で生じる所得移転の問題は扱っていない。また、優先債権者が自主的に債権を放棄する結果、新規投資が実施可能になり、優先債権の価値が上昇する場合については優先権侵害とみなしていない。この点で通常より狭い意味で優先権侵害を定義している。
- 7) 成果に固定資産を含めるのは、追加投資が既存の固定資産の価値をも毀損することを簡単にモデル化するための工夫である.
- 8) ここで返済期日を時点1とするのは、少なくと も当初のプロジェクトの成果が実現した後でなければ、

- 債務を返済できないからである.
 - 9) 瀬下・山崎(2004)lemma 0 参照
 - 10) 脚注5を参照.
- 11) このような所得移転の効果については Schwartz(1989)を参照.また Berkovitch and Kim (1990)や Gertner, and Scherfstein(1991)は、債権の優 先労後関係と投資の効率性について議論している.
- 12) 破綻手続きに入った状況で、優先債権者から株主や経営者に十分に大きな正の所得移転が可能ならば、株主や経営者に非効率な投資を思いとどまらせることが可能になる。経営者に帰属するそのような所得移転は、しばしばゴールデンパラシュートと呼ばれる。しかし、そのような所得移転はそれ自体、経営者(株主)と債権者間での優先権侵害を意味している。株主と債権者間での優先権侵害は、本稿および瀬下・山崎(2004)の主要な関心ではないが、すでに多くの文献で、さまざまな非効率性を生じさせることが知られている(Longhofer(1997)や Bebchuk(2002)等を参照). なお、ゴールデンパラシュートは、日本の破綻法制では一般に認められていないため、以下では株主と債権者間に生じうる所得移転については無視する。
- 13) これによって、いわゆる「ソフトな予算制約」の問題が生じる。銀行貸出の文脈の中でこの問題について分析したものとしては、Dewatripont and Maskin (1995)や Berglöf and Roland (1997)などがある。ただし、これらの論文でソフトな予算制約が生じるのは、事後的に企業を継続することが効率的な場合である。この点が企業継続自体は非効率である場合を分析している瀬下・山崎(2004)との違いである。
 - 14) この条件は以下に述べる(1)と(2)式である.
- 15) 瀬下・山崎(2004)の lemma 2 参照. (2) 式は解釈しやすいように書き換えてあるが,本質的な変更はない
- 16) キャッシュ・フロー θ が大きくなれば、その分だけ優先債権を返済でき、優先残債権額 $B-\theta$ が減少する。この効果は θ が限界的に 1 単位増加したときに 1 単位の減少となり、これによってその継続価値 $V_{B-\theta}(w)$ も減少する。ただし、継続時に外部の新規融資者にリスク移転できる効果が、 $V_{B-\theta}(w)$ の定義の中では控除されている。そのため残債権額が減ると、このリスク移転も減少することになるので、その分は $V_{B-\theta}(w)$ の中で残債権額減少の効果を一部相殺する。そのため θ の増加が $V_{B-\theta}(w)$ の価値に及ぼす限界的な効果は 1 より小さくなる。
- 17) このケースでは、 θ が減少した場合にも(2)式が成立しなくなり、追い貸しがなくなると考えるかもしれないが、この場合には企業自体が清算されることになるので実証分析からは排除できる。
- 18) 大瀧(2000)は、銀行による監視能力がないため、代わりに負債による経営者の規律付けを担保するために貸し渋りが生じているとしている。この仮説3は大瀧(2000)の仮説についても間接的な証拠となる。なお、Bebchuk(2002)は優先権侵害が借り手のモラルハザードを助長させると指摘している。
- 19) ここで、効率性の指標として ROA ではなく、q 自体を用いることも可能であろう、q を基準に分割した推計結果は 3 節(5)後半で説明する、q は理論的

には企業投資の効率性を測る指標として ROA より望ましいが、qの分母である置き換え費用を求める際に、簿価の情報を利用せざるを得ないため、推計されたqの水準はしばしば実態とかけ離れてしまう。qの限界的な影響や変化の影響を見るときには、この問題は小さいと考えられるが、qの水準を利用してサンプルを分割する際には問題を生じやすい。

- 20) 十分統計量の Tobin の q にキャッシュ・フローなどの他の変数を加えて金融市場の不完全性を分析したものとしては、Fazzari, Hubbard and Petersen (1988) や Hoshi Kashyap and Scharfstein(1991), Gilchrist and Himmelberg (1995) など、数多くある.
- 21) このアイデアは両査読者からの指摘に基づいている.
- 22) 占有者を立ち退かせる請求ができるのは所有 者(家主)のみとされ、一般に債務者となる. 抵当権行 使を妨害しようとする目的で、債務者自身が賃借人を 住まわせるケースでは、債務者は立ち退きを請求しな いので、競売が終わって所有者が代わるまで、誰も立 ち退かせることができなくなった.
- 23) 短期賃借権に関する判例については,内田 (1996)などを参照.
- 24) この異常な状況に対して,平成11年11月24日に最高裁大法廷は,わずか8年で平成3年の判決を修正し,抵当権者による妨害排除請求を認めた.
- 25) 無剰余の抵当権の問題は, 森田(2000)等を参照.
- 26) 正確に言うと、メイン寄せは、それ自体が優先権侵害の要因ではなく、法的・あるいは政治的な優先権侵害の結果を暗黙裏に予想して、メイン・バンクが肩代わり融資などを引き受ける現象であり、結果的に生じている優先権侵害というべきものかもしれない。
 - 27) 長・短借入金の合計で割引手形等は含まない.
- 28) 1981~85 年, 86~90 年, 91~95 年, 96~2000 年の4期間に分けて推計した.
- 29) 土場企業を分析の対象としているため、資本 金1億円以上の ROA を用いた.
- 30) 資金繰り指標は単年度の業績に影響を受けやすいため、各年度毎に資金過不足を判断するのは適当ではない。そこで今回は、分子・分母とも5年間の平均をとり、その比率が1を上回るか否かで資金過不足の判断をした。
- 31) もちろんこのような制約を課すことで80年代,90年代に設立された比較的若い企業がサンプルから漏れてしまう恐れもある.
- 32) Hayashi and Inoue (1991)によると、各資産のうち建物については、Dean, Darrough and Neef (1990)が行った試算結果の中から製造業の設備投資統計を用いた数値(4.7%)を採用し、構築物の償却率はその1.2倍と仮定している。また、機械や輸送用機械、工具器具備品等は、Hulten and Wykoff(1979, 1981)が計測した売却・除却調整済みの償却率を1975年の産業連関表に基づき加重平均した上で、売却・除却による償却率の上昇分を40%として調整前の償却率を求めている。
- 33) 分割されたサンプルのタイプ毎の記述統計量については関心のある読者は、著者に請求されたい。

- 34) 広告費の効果については Tirole (1988) 等の議 論を参照.
 - 35) この解釈はレフェリーからご指摘いただいた.
- 36) なお他のいずれのグループのいずれの期間においてもqの係数は有意ではないが、g47g5 企業の90年代後半においては有意に負となっている。g0内生性はコントロールしているが、企業の資金調達手段の選択等の問題は十分にコントロールされていないかもしれない。すなわち、効率性が低く資金不足にある企業では、効率性が低ければ低いほど信用力は低下しており、社債などに頼ることができず、銀行貸し出しに依存せざるを得ない。そのため、銀行が社債発行を肩代わりする立場にいた可能性があり、いわゆるメイン寄せのような現象を検出している可能性がある。この点は、以下で説明する社債と銀行借入の代替性を考慮した推計で、g00有意性が消滅している点からも確認できる。
- 37) この推計結果について関心のある読者は、著者に請求されたい.
 - 38) 脚注 19 参照
- 39) 純資産総負債比率は負債のレバレッジの大きさを反映するものであり、レバレッジの大きさが企業の財務リスクに影響を与え、資本コストを高める影響 (MM 命題(1958))もコントロールできる。
- 40) これについても関心のある読者は、著者に請求されたい。このほか、企業は破綻前に銀行貸し出しなどではなく、企業間信用に頼る傾向もあるため、純資産比率に替えて負債に占める企業間信用の割合を考慮した変数(流動性負債-短期銀行借入金)/総負債や収益性の代理変数として営業利益/売上高なども試したが、いずれも結果の有意性に大きな影響は生じなかった。
- 41) 企業の純資産総負債比率を入れた推計結果(3.5節最終段落参照)では、キャッシュ・フローの係数の有意性は大きく影響していないことから、負債の大きさよりも、社債と銀行借り入れの代替的もしくは補完的な関係の存在が、多重共線性をもたらしている原因と考えることができる。
- 42) 既存の債権者のコーディネーションの問題や交渉の問題さえ解決すれば、こうした追い貸しによって、デット・オーバーハングによる貸し渋りを緩和することは容易にできるはずである。
 - 43) また脚注 34 の議論も参照.

参考文献

細野薫・渡辺努(2002)「企業バランスシートと金融政策」『経済研究』第53巻第2号, pp.117-133.

- 森田修(2000)「倒産手続と担保権の変容 —— 優先弁済 権の範囲と任意売却 —— 」『倒産手続きと民事実体 法』別冊 NBL60 号, pp. 73-101.
- 小川一夫・北坂真一(1998)『資産市場と景気変動』日本経済新聞社、
- 太田智之・杉原茂・瀬下博之・山崎福寿(2006)「日本 の破綻法制が企業の価値とその効率性に及ぼす影響 についての理論と実証」『日本経済研究』No. 53, pp. 72-97
- 大瀧雅之(2000)「銀行に監視能力は存在したか? ―

- 過剰債務問題の視点から 」宇沢弘文・花崎正晴編『金融システムの経済学 社会的共通資本の視点から』東京大学出版会、pp. 113-127.
- 瀬下博之・山崎福寿(2004)「『追い貸し』と『貸し渋 り』 — 優先権侵害の経済分析 — 」CIRJE ディ スカッションペーパー, http://www.e.u-tokyo.ac. ip/cirje/indexi.html.
- 内田貴(1996)『民法 III 債権総論 担保物権』東京大 学出版会。
- 山崎福寿·瀬下博之(2000)「抵当権と短期賃借権」 『社会科学研究』東京大学社会科学研究所,第51卷 第3号,pp.59-83.
- 山崎福寿・瀬下博之(2002)「担保権消滅請求制度の経済分析」『ジュリスト』No. 1216, pp. 63-84.
- Bebchuk, L. A. (2002) "Ex Ante Costs of Violating Absolute Priority in Bankruptcy," The Journal of Finance, Vol. 57, No. 1, pp. 445–460.
- Berglöf, E. and G. Roland (1997) "Soft Budget Constraints and Credit Crunches in Financial Transition," European Economic Review, Vol. 41, No. 3-5, pp. 807-817.
- Berkovitch, E. and E. Kim (1990) "Financial Contracting and Leverage Induced Over-and Under-Investment Incentives," *Journal of Finance*, Vol. 45, No. 3, pp. 765–794.
- Blundell, R., and S. Bond (1998) "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models," *Journal of Econometrics*, Vol. 87, No. 1, pp. 115–143.
- Dean, E., M. Darrough, and A. Neef (1990) "Alternative Measures of Capital Inputs in Japanese Manufacturing," in *Productivity Growth in Japan and the United States*, ed. By C. Hulten. Chicago: University of Chicago Press.
- Dewatripont, M. and E. Maskin (1995) "Credit and Efficiency in Centralized and Decentralized Economies," *Review of Economic Studies*, Vol. 62, No. 4, pp. 541–555.
- Doornik, J., M. Arellano, and S. Bond (2002) Panel Data Estimation Using DPD for Ox. Available at http://www.doornik.com/download/dpd.pdf.
- Eberhart, A. C., W. T. Moore and R. L. Roenfeldt (1990) "Security Pricing and Deviations from the Absolute Priority Rule in Bankruptcy Proceedings," The Journal of Finance, Vol. 45, No. 5, pp. 1457–1469.
- Eberhart, A. C. and L. A. Weiss (1998) "The Importance of Deviations from the Absolute Priority Rule in Chapter 11 Bankruptcy Proceedings," Financial Management, Winter, Vol. 27, No. 4, pp. 106–110.
- Fazzari, S. M., R. G. Hubbard and B. C. Petersen (1988) "Financing Constraints and Corporate Investment." *Brooking Papers Economic Activities*, 1, pp. 141–195.
- Gertner, R. and D. Scherfstein (1991) "A Theory of Workouts and the Effects of Renegotiation Law,"

- Journal of Finance, Vol. 46, No. 4, pp. 1189-1222.
- Gilchrist S. and C. P. Himmelberg (1995) "Evidence on the Role of Cash Flow for Instatement," *Journal* of Monetary Economics, Vol. 36, No. 3, pp. 541–572.
- Hayashi F. and T. Inoue (1991) "The Relation between Firm and Q with Multiple Capital Goods: Theory and Evidence from Panel Data on Japanese Firms," *Econometrica*, Vol. 59, No. 3, pp. 731–753.
- Hoshi, T., A. Kashyap and D. Scharfstein (1991) "Corporate Structure, Liquidity and Investment: Evidence from Japanese Investment Groups," Quarterly Journal of Economics, Vol. 106, No. 1, pp. 33–60.
- Hosono, K. and M. Sakuragawa (2003) "Soft Budget Problems in the Japanese Credit Market," Nagoya City University Discussion Paper Series in Economics, No. 345.
- Hulten, C. and F. Wykoff (1979) "Economic Depreciation of the U.S. Capital Stock," Report submitted to U.S. Department of Treasury, Office of Tax Analysis.
- La Porta, R. Lopez-de-Silanes, F. and Shleifer, F. (1998) "Law and Finance," *Journal of Political Economy*, Vol. 106, No. 6, pp. 1113–1155.
- Longhofer, S. D. (1997) "Absolutely Priority Rule Violations, Credit Rationing, and Efficiency," *Journal* of Financial Intermediation, Vol. 6, No. 3, pp. 249–267.
- Modigliani, F. and M. Miller (1958) "The Cost of Capital, Corporation Finance and the Theory of Investment," *American Economic Review*, Vol. 48, No. 3, pp. 261–297.
- Myers, S. (1977) "Determinants of Corporate Borrowing," *Journal of Financial Economics*, Vol. 5, No. 2, pp. 147–175.
- Myers, S. and Majulf, N. (1984) "Corporate Financing and Investment Decisions When Firms Have Information that Investors Do Not Have," *Journal of Financial Economics*, Vol. 13, No. 2, pp. 187–221.
- Peek, J. and E. S. Rosengren (2003) "Unnatural Selection: Perverse Incentives and The Misallocation of Credit in Japan," NBER working paper series, No. 9643.
- Schwartz, A. (1989) "A Theory of Loan Priorities," Journal of Legal Studies, Vol. 18, No. 2, pp. 209–261.
- Seshimo, H. and F. Yamazaki (2005) "Perverse Incentives of Loan Supply and Violation of the Absolute Priority Rule in Japan--Credit Crunch and Excessive Additional Loan-," 2005. Mimeographed.
- Tirole, J. (1988) The Theory of Industrial Organization, MIT Press, Cambridge.