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Asymptotic Distribution of the Least Squares

Estimator of the Cointegrating Vector

Katsuto Tanaka

1. Introduction

Problems associated with cointegration
have recently attracted much attention.
Granger (1981) first pointed out that inte-
grated, multiple time series may have line-
ar combinations which are stationary. In
such a case those variables are said to be
cointegrated and the transformation matrix

which makes the integrated process station-

ary is called the cointegrating matrix.
Engle and Granger (1987) discuss from a
practical point of view the estimation and
testing procedures for cointegration. Phil-
lips and Ouliaris (1987 ) develop an as -
ymptotic theory for tests for the presence
of cointegration. Engle and Yoo (1987) ex-
plore the multistep forecasting behavior of
cointegrated processes.

In this paper we concentrate primarily on
the regression relation among components
of the integrated process and obtain the
asymptotic distribution of the least squares

estimator (LSE) of the regression coeffi-

cient. Especially for the two dimensional
case we compute the limiting distribution
of the normalized estimator. In Section 2 we
describe a general model for the integrated
process. In Section 3 we discuss the case
where there exists no cointegration. This
includes as a special case the spurious

regression observed in Granger and New-

bold (1974) . Section 4 deals with the case of
cointegration. In these two sections the
limiting distribution functions are obtained
together with percent points and moments.

Proofs of some theorems are provided in
Appendix.

2. Model and Assumptions

We assume that the g-dimensional inte-
grated process {y;} is generated by
Q) yi=yiatu,, Yo=0,

where {#;} is a stationary process defined
by

@ u=3Cern  BllCI<o,

Azé@#&

Here | M| denotes the square root of the
largest eigenvalue of M'M and {¢,} is a
sequence of i. i. d.(0, /;) random variables
with I, being the ¢ X ¢ identity matrix. The
main purpose here is to study asymptotic
properties of regression relations among the
components of {y;}. For this purpose we
decompose y;, €; and A into

Yij 1 q1 &1 i aq1
(3) yj= b Ej—__ bl
y25] T @2 &/ 1 @2
A\ T q1
A= :
A I qz
where we assume that

4) rank(A%)=aq.
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Let us now consider the regression rela-

tions

(5) Yo25— Byl] + 2,

6) yoi=a +B?/1; Tes;,
where
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Note that B and B are the LSE’ s without
and with mean correction respectively.

In the next section we discuss
asymptotic distributions of B and B when
the matrix A in(2)is nonsingular. The case

when A is singular corresponds to cointe-

gration and is discussed in Section 4.

3. Nonsingular Case-No
Cointegration

In this section we assume that the matrix
A in(2) is nonsingular. This is equivalent
to saying that the spectral matrix fu(w)of
{u;} evaluated at the origin is nonsingular
since fu(0)=AA’/(@2r). To obtain the
asymptotic distributions of B and B in(5)
and (6) respectively we need the following
lemma, which is proved following the same
lines as in Tanaka(1988).

Lemma 1 : As T—0, it holds that
7
(- Zy's) > LAWA),

o7

where L (X)denotes the probability law of
X while

3= D) (4= 1))~ LAWRA),

ot %%
WM:'ll’/O‘l[l—max(s, ) 1dw(s) dw(t),
WB:/(;I'/O.I[min(S’ t>—3t] dw(3>d1,{)(t)’,

with {w (¢)} being g-dimensional Brownian
motion with E(w(¢))=0 and E(w(s)w

(B =min(s, £) L.

Phillips and Durlauf (1986) used different,
but equivalent expressions for Wx and Ws,
which are

L(WM>=L(fw(t>w<t>'dt>,
L(WB>=L([w<t>w<t>'d¢

~ [(wyar [ wy )

For the derivation of distribution functions
as described in Theorem 2 below the pres-
ent expressions are more convenient. Using
Lemma 1 we now have the following theo-
rem concerning the weak convergence of B
and B, which is proved from Lemma 1
using the continuous mapping theorem.
Theorem 1: As T—oo, it holds that
L (B>—’L (A’ WAy (As WaAr) ) .
/0 (E>—’L (A WA (A% WA ™).

Note that A1 WaxA: and A1 WpA, are
nonsingular with probability 1 because of
the assumption (4).

Let us restrict ourselves to the case ¢:=
¢2=1 so that B and B are scalar and put

Fi(z)=lim P (B<xz)=P(xA" 1 WanA:
—%(A’z WitAr+ A’y WieAz) >0),

F(z) =lim P(B<zx)=P(xA WeA;

— LA WA+ A WAD >0).
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Then Fi and F> can be calculated from the
following theorem.

Theorem 2 :
Lot el
Fy@) =5+~ "4 Im(e;(0)) db,
G=12),

where Im (Z)1is the imaginary part of Z and

21(0) =[cosv2i0& () cosy2i0& (z)] 2,

_ [ siny2i0&,(z) siny2i0& (z) -z
e (0)=| e @) 1206 [

£(2), &(@) =5 (A1 (zAi— AD
£/ (AL (A~ A2)*+]AP).

We note that ¢:(8) and ¢.(8) are the
characteristic functions(c. f.” s) of A"y Wa
A1 e (Alz WMAl +A/1 WMAz) /2 and -Z'All WB
A1— (A WA+ AL WsA3) /2 respectively.
Moments of Fj(x)can be obtained using
the formula given in Evans and Savin
(1981).

Corollary 1: Let wi» be the k-th order
central moment of Fj(x). Then we have

M= 1= Ma1 =A'1A2/A'1A1,
021 a7 [T kl,Alz/ (A,IAI) 2,
0‘222 o= kzIAlz/ (A,1A1> 2,
ta3= pp3=0,
/1142110‘41, /l24=120'42,

where

kl=%j0-mu (cosh u)‘%du—i=

2
kz=%2— A T Ginh i) ’%du~%=0.39652,

0.89072,

ll=[élmu3(cosh u)%du*kl_%]/kzl
=4.95393,

lzz[ﬁlmu%(sinh u)"tdu ‘kz_%]/kzz
=4.08381.
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It is noticed that F; and F> have the same
mean ; the variance of F» is smaller; the
kurtosis fus/0*1—3 of Fy is 1.95393 while
that of F3is 1.08381. Since 3= u3=0, the
skewness of F} and F>is 0. In fact Fi and
F> are symmetric about x. To show this we
first note from Appendix that

L(xA\ Wi _‘%@4'2 WuAi+ A1 WiAz))
:L<rgl El(x)in"’i522<xz') Y2n>’
(n=g)=
L (@A WaAy— 5 (A Wali+ A WaAs))
:L<i El (.Z‘)in+52(l‘) Y2n>’

=l nin?

where (X, Y»)'~NID(0, /). Then it can be
checked easily that F;(x+ ) + F;(—x+ 1)
=1 (j=1, 2) implying symmetry about z.
Moreover it is found that F;(ox+pw) (G=
1, 2)do not depend on A, i. e., the limiting
distributions of (B—u) /o1 and (B— ) /o
are independent of A. More specifically
we have the following corollary.

Corollary 2 : Let Gi(x)and G:(x)be the
limiting distribution functions of (B — x) /o
and (B — ) /o, respectively. Then we have

G;(x) =F;(ox+ 1)
B SRS ;
— >+~ [T Im(e,(0)) 6,

where @, (68)are the same as ¢;(8) (j=1, 2)
in Theorem 2 except that & (z) and & (x)
are replaced by

&), &) =5 VEz/ha+1),
(G=1,2)

with 4 and 4. given in Corollary 1.
Figure 1 draws the graphs of g;(x) =dG;

(z) /dx together with the density of N (0,

1). All distributions have the mean 0, vari-
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Figure 1 Probability Densities of Gj(x)and N (0,1)
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Table I Percent Points of G,(x)

I 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.99

z(G=1 0 020553 043324 0.72052 1.17607 1.61712 2.05470 2.63320
z(G=2) 0 0.22451 0.46927 0.76797 1.21674 1.62798 2.02047 2.52341

ance 1 and skewness 0. The kurtosis of Gi
is 1.95393 while that of G2 is 1.08381, as was
described before. Table 1 reports percent
points of G;(x) for x=0. The percent point where L is the lag operator and
of F;(x) may be recovered from the percent
point z; of G;(x) as o;x;+u. We note in
passing that Gz(x) corresponds to the limit-
ing distribution function of the LSE in the
spurious regression discussed in Granger Then, premultiplying (— B, I42) on both
and Newbold (1974) and Phillips (1986). sides of (7), we have

+(AL) —A)(z”),

25

A(L)= lZ"O CiL*:

4. Singular Case-Cointegration B ' yaur= B+ vy
J ’

In Theorem 1 we observe that, if there
exists a g2X ¢ matrix B such that A’.= where {v2;} is defined by
BA’,, then B and B both converge in proba-

bility to B=A"2A:(A1A1)"". In this case v2;=G' (L) &,
the matrix A in(2) becomes singular with G (L)=(=B, Is) (A(L) —A) /(A= L):
rank (A) =rank (A:) = ¢, which we assume q2Xq.

in this section.
Let us rewrite (1) with (2) compactly as Note that

O Q=L (Z)=A (L) £j=<ﬁ::>ej AD-A__ScZi1e)

l_L =1

m=i
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which is well defined because of the second
relation in (2) so that {vz;} becomes sta-
tionary. Note also that (— B, Iq2) is the co-
integrating matrix which transforms {y;}
into a stationary process {y2;— By}

We now consider the asymptotic distribu-
tions of B and B defined in (5) and (6)
respectively . For this purpose we first
have the following lemma, which is essen-
tially due to Phillips and Durlauf (1986).

Lemma 2 : For the model (1) with (2) it
holds that, as 7'— o,

N~
3 agamne SR ammae
S |

!
/h\ll

W) ~LAWA+EL),
(vi— 7) u’j> ‘
A< W,—[w (t) dtw (1)’)A’+§D),

™M= WM%
%

.
-

where

|M'~l

LTj lyj, I}:E(uhu,k+j))

W= [w® dw(ey".

v

Let us put
it (A,I)I q1
A= ,
G /7 q
where
G'=G'()
=(8[Z1c],, -[&c],.,
=1 (1,1) I=1 (2,1)
B[Z'l lcl]a P [12=1 lcz]a,z))’

with [M];.» being the(j, £) —th block of
M. We also define

P4 1 q1

P= ;

Po i q:z
which is a g X g lower triangular matrix
AA’ with rank (P1) = q1.

such that PP'=

Then we have the following theorem.

Theorem 3 : As T—, it holds that
L(T (B—B))—L((A'W:G+D)’
(AW WA ™)
=L((P1WiP:+ D) (P1WuP)™),

L(T B~B)—~L{A(Wi— [ w(t)dt
w(Q)) G+D) (A1 WsA1) ™)
—L(P\(Wi— [ w(®)dt w(1)) P+DY’
(PAWsP)™),

where

©

EE (U1a0"2,045) © @ X Q2.

Let us restrict to the case gi=¢2=1 as in
the previous section and denote the limit-
ing distributions of T(B—B)and T (B
—B) as Hi(x) and H:(x) respectively. We
also put

VA A 0
vALA, A1A:

5

Then we have the following results con-
cerning the limiting distributions of 7" (B
—B) and T(B—B).

Theorem 4 :
Hy(2) =5+ [ Im(e " 3,(6)) do,
(j=1,2),
where d=D and

.:(0) —[cosf+216ab Slf}—‘/—] .

@2(8) =[———_8Cf;b292 (cosvv —1)

_ 4a*b*6*)\ sinyv. ]—%
+(1 v ) Jv !
v=410a’(x+16c?.
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The first two moments of H;(x) are

given by the following corollary.

Corollary 3 : Let ¢j» be the k-th order

raw moment of H;(x). Then we have

24 —ab b

Ein= o Wh+;,
rua e hd b
ﬂzl_Tnl,
2 b 2
e 2b Z+< 4C4a§b 3 22;1 >m1
o 2
Ly (staab) i
2
+
s b - %c 1+_ (ngaab)
where

ml=/0wu (cosh u) ’%a’u=5.56286,

it £ "o (cosh ) F du=13566249,

A ﬁ 4 Ginhoa) =10 15876

nz=£mu% (sinh %) ‘%(1 —cosh u) du
=—2.64149,
RINT 7 1
n3=£ uz(sinh «) 2du=372.35719.

In general H;(x) are not symmetric.
There exists no transformation that makes
the limiting distributions of 7' (B— B) and
T (B— B) independent of parameters a, b,
¢ and d. It, however, can be shown that, if
b=d =0, then H;(x) are symmetric about
the origin. In that case H,(cx/a), i. e., the
limiting distributions of 7' (B—B) and T
(B— B) multiplied by a/c, do not depend
on a and ¢. We also have the following
central moments of H;(cx/a) with b=d=

0

g pa—,
| 0‘21'—_#,12:7%1,
i #132#23:0,

Do L
T2=l2=m

N3,

B B R

ﬂ14=%-[°u4(cosh u)"%<u (tanh »)?

+% tanh % — >du
=203.49373,
;mzé'/o‘mu%(sinh u) ‘%<u2(coth u)®

—coth u—zu >du
= 558.53578.

Therefore the kurtosis is 3.57589 for ;=1
and 1.82578 for j=2.

Figure 2 draws graphs of the limiting
probability densities of 7 (B—B) /o1-alc
and 7 (B—B)/o:-a/c, i. e., those of H;(c
oixla) (j=1, 2) for which b=d =0 together
with the density of N (0, 1). Table II reports
percent points of H;(cosx/a)with b=d=0.

(Department of Economics,
Hitotsubashi University)

Appendix

Proof of Theorem 2 . Let us consider
first Fi(x) =P (X >0),
where

Xlz-/o'lll[l—max(s, t)dw (s)’Hdw (t),

H=xA1A’1—%(A2A’1+A1A’z).

Note that the eigenvalues of H are & (x)
and &(x). It is known(see, for example,
Varberg (1966)) that the eigenvalues of the
integral equation

g(t) ZAA‘I[l—max(s, t)1g(s)ds

2
are given by A= n-L) 2 (n=1, 2:--).
Thus Mercer’s theorem (Hochstadt(1973))
yields

L(X1)=L<£1£1[1—max(s, t)](&(x)
dwi (s) dw: (t) + & (x) dw:(s)
dun(1)) )

—L(n 151(35) Wihnt&(x) W u))

(-3
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Figure 2 Probability Densities of H,(co x/a)and N (0,1)
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Table II Percent Points of H;(co,x/a)
P 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.99

x(G=1) 0 0.17437 0.37407 0.64288 1.11045 1.59910 2.10493 2.79217
x(G=2) 0 0.20569 0.43422 0.72379 1.18434 1.63078 2.07748 2.69403

where (Win, Wan)’~NID (0, I,). Then it can
be checked that the c. f. ¢1(8)of X is given
as in the theorem, which leads us to the
expression for Fi(x).

The expression for Fx(x) =P (X;>0)can
be proved similarly, where

Xz=£l’/0‘1[min(s, t) —stldw (s) Hdw (t).

Since the eigenvalues for the integral equa-

tion with the kernel min (s, ¢) — st are given
by #*7*(n=1, 2, ---), we arrive at the c. f. @2
(@) of X as given in the theorem to obtain
Fz (.Z')

Proof of Corollary 1 : Let us denote by
(i the k-th order raw moment of F;(x).
Then, because of the formula given in
Evans and Savin (1981), we have

ey oG- )

ol F(k)l Ekgen, T R A
dbh,

where

mi (— 6y, 02) =[cosyar+ a: cosvai— dz]_%,
sinyait+a: sinyai—a: o
m2<—61’ 62)=|: */%"‘dz Zl/l—dz ] 2
/3 W 01A,1A1 o+ (92A,1A2,
(7 A dzl o 922|A|2.
Partially differentiating m, (— 6, 6:) with
respect to 6, and evaluating at 6:=0 we
obtain results described in the corollary. In

the course of computation we used com-
puter algebra REDUCE.

Proof of Theorem 4 . We have H;(x) =P
(Y;>0) G=1,2),
where

¥ f : [ [ max (s 1) ]dws ) dwit)
— P\ WiP,—d, :
Yzzalelll[min(s, t) —stldwi (s) dw: (t)
—pa(W,—[w(t)dwuwpz—d,
Pi=(a2.0) Po—(b c):

Suppose that &;= (&1, €2;)’~NID(0, Iz)and
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define
1 1
C=(E'-.O):T><T, e=(§):T><1,
1...1 1
M=I;—kee, f=(T,T-1,-1,
2 (Eu, s Exr)’, (e (621, e Szr)/,

e = (&1, &),

Then it can be shown using Lemmas 1 and
2 that L(Yir)—L(2 Ya) and I:( Yor)— L (2
Y2), where

2
Yir=¢ o e
e &
ab-—2d.
YZT:
2
; Z%f C’MC——aTb—<ee’——LTfe’~lTef’>
€
_ac
TMC
ac
s )
- & ab
0

Thus we have only to obtain the limiting c.
f’s of Yir and Yar.

Let the c. f’s of Yir and Y2r be ¢17(8)
and .7 (6)respectively. Then we have

: ol
¢ir(5) = ]T_%Bj 2ei0(abv2d)’
=1,2),
where
BIT:% CC— abee’,

Bzrz% CoMe— ab(ee’——lee’—LT ef’),
0=2a*(x+16c?).
For these B;r’s there exist continuous and
symmetric functions K; (s, ¢) defined on [0,
1]x[0, 1] that satisfy

: TR N
lim max |Bir (&, 1) —Kj(—f, 7)]—0,

where
Ky (s, t) =01 —max(s, t)) —ab,
K;(s, t) =08 (min(s, t) —st) —ab(s+t—1).

ot 7%
It is impossible to obtain eigenvalues of
K, and K; explicitly, but we can derive the

Fredholm determinants D;(1) associated
with K; as follows.

D1 (1) =cos VA8 + Aap SI0AA8

A8 ’
22 2.2
D () = 2a62b (cosvAd —1) +(1 +%)
sinyAd
e

Then ¢;7(0)—[D;(2:0)] Y?exp (10 (ab—2
d))as T—co, which gives ¢;(#)in the
theorem. This, in turn, gives expressions
for H;(x).
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