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Optimal Pre-Testing Procedure in Regression”

—— A minimum Average Risk Approach —

Toshihisa Toyoda « Kazuhiro Ohtani

1

Although the use of pre-testing procedures in
regression is so popular in applied econometric
research, applied researchers have paid wvery
little attention to the optimality or nonoptimal-
ity of their preliminary tests. Recently, some
theoretical contributions have been made in
setting some optimal critical values for pre-tests.
Judge and his associates (e. g., [1] [2]) called our
attention to optimal pre-testing problems on
varied occasions. Sawa and Hiromatsu [4], based
on their own specific risk function, proposed
minimax regret critical values for pre-test esti-
mators for the case of a single hypothesis. Brook
[3], based on a more general quadratic risk
function than the Sawa and Hiromatsu case,
derived minimax regret critical values for multi-
ple hypotheses. Toyoda and Wallace [5], based
on the Brook type quadratic risk function, gave
minimum average relative risk critical values.
The minimax regret critical values for pre-tests
which have been derived by Sawa and Hiromatsu
[4] and Brook [3] are very stable and concen-
trated around 1.7~2.11, while the alternative
optimal critical values which have been derived
by Toyoda and Wallace [5] are not necessarily
close to the former values; they are very close to
the minimax regret values when the number of
restrictions is large but approach to the minimax
(rather than the minimax regret) values when it
is small. .

In this paper we examine the Toyoda and
Wallace approach when a reasonable skewed
prior (rather than a diffuse one) of an unknown
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1) This does not mean that the levels of signifi-
cance corresponding to the optimal critical values
are stable.

parameter is used and show how the optimal
critical values are sensible to our prior knowledge
of null hypothesis used in pre-tests.

The organization of the paper is as follows. In
section 2 the basic pre-testing procedure is
reviewed. In section 3 we show analytical solu-
tions of optimal critical values when a gamma
prior is used. In section 4 we state the numerical
results of the optimal critical values for some
specified values of the gamma parameters. Some
concluding remarks are observed in the last
section.

2

Let us consider a linear regression model
(1) y=XB+e;e~N(0,0°I7),
where y is, say, Tx1, X is TXk, B is kx1 and
g is Tx 1. We assume that X is a known matrix
with rank k.

We assume that (1) is an incompletely specified
model and that we conduct some kind of prelimi-
nary tests prior to estimating B or E(y|X).
Various kinds of hypothesis for pre-tests can be
expressed conveniently by
(2) H'B=h,
where H’ is m Xk with rank m and A is mXx 1.
Both A’ and % are assumed to be known. Null
hypotheses of insignificance of any subset of
explanatory variables and of linear dependence
among them are of course expressed by (2). In
order to show the wide applicability of the general
linear hypothesis (2) to incompletely specified
models, let us consider the following two examples
which are used frequently in applied research.

First, consider pooling T time series of N,
cross-sections in regression analysis (f=1, 2, ---,
T). The model is specified as
(3) ywe=X.fiter; ee~N(0, oIy,
where N, observations of y, and X, are available
in each period (¢t=1, 2, +++, T). We decide whether
we pool the whole time series of cross-sections or
not, based on the outcome of a test of the hypo-
thesis
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and

h=0,

and the hypothesis (4) can be expressed by (2).
The second example is concerned with the
Chow test, a test of equality of regression coeffi-
cients across two data regimes. Wallace [7] points
out that this problem is equivalent to choosing
H' to be (I, —1I,).
Let us consider a pre-test estimator for

E(ylx)2:
ifuz=2i

Xb
*
(5 Xp _[xﬁ if u<2
where j is the unrestricted least squares estimator

for B, ﬁ is the restricted least squares estimator,
A 1s a critical value for pre-testing of the hypothe-
sis (2) and u is the calculated value of a test
statistic. That is,

(6) w=(H'b—h) (H'S™ H) " (H'b—h) |md*
where S=X'X and 4* is an unbiased estimator
of ¢% and u is distributed as the noncentral F
with m and T-% degrees of freedom and noncen-
trality @, where

(7) O0=(H'B—h) (H'S'H) ' (H'—h1) /24"

A quadratic risk function for the pre-test esti-
mator i1s defined as®

(8) R(XB*)=E(XB*—XB) (XB*—Xp).

After some calculations it is found that#)

(9) R(XB*)=d¢*{k—m~+mr(0, )

2) Here, we do not consider a pre-test estimator
for B per se, whose general quadratic risk function is
not scale invariant to measuring variables in X. In-
vestigating any optimal pre-testing procedure for
this case is an open question, although Brook [3]
has given some limited examples of minimax regret
critical values.

3) This is the same type risk function as has
been used by Brook [3]. If we deal with orthogonal
data, this risk function is equivalent to the one of
the pre-test estimator for 8 per se because it holds
that

E(XB*—Xp)' (XB*—XB)
=E(B*—p)'S(B*—B) =E(B*—p)’(B*—B)-

4) See Brook [3] or Toyoda and Wallace [5].
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+260[1—2r(0, ) +5(0, )]},
where
(10) (0, 2) =Pr{F’'(m+2, T—Fk;0)
=mi[ (m+2))
and
(11) s(0,2) =Pr(F' (m+4, T—k: 6)
=mi[ (m+4)}.

Here, F'(a, b: #)stands for a statistic which has
the noncentral F density with ¢ and b degrees of
freedom and noncentrality #. From (9) it is seen
that the risk function divided by ¢* depends on
m, k, T, 2 and @.

3

Toyoda and Wallace [5] seeked the values of
A which minimized

(12) a()= f "R (X8

—min[R(Xb), R(X5)]}d8/s*

If a diffuse prior on @ is assumed, minimizing
G(A)in (12) is equivalent to minimizing expected
relative risk. The approach adopted by Toyoda
and Wallace is very natural and general under
the ignorance of prior distribution of #. Logically,
@ can take any value in the interval [0, o),
depending on how we set the null hypothesis for
the pre-tests. However, on many occasions some
skewed distributions of # will be more proper
than the diffuse one?).

In the following we use a gamma prior on §,
which is a generally accepted representative of
skewed distributions on the domain [0, co), In
order to check the sensitivity of the optimal
critical values obtained by Toyoda and Wallace.

Let the gamma distribution be
(13) g(@; p, a) <cald*'e™; >0, a>0.

We first note that in the present case the
Toyoda and Wallace criterion can be simplified
to a minimum average risk criterion from the
former minimum average relative risk. Toyoda
and Wallace used the relative risk so that G(A)
could be integrable. However, our new average
risk incorporating the gamma prior is integrable
by itself. Its explicit from is:

5) Consider, for instance, estimating an aggre-
gate consumption function: Cp=fy+ 5, V* + fare+uq,
where C=consumption expenditures, ¥*=perma-
nent income, and r=the rate of interest. Our a priori
knowledge suggests that the prior distribution of @
for the case of testing H: ;=0 would be skewed
for some positive value of § while the one for the
case of testing H': 83=0 would be skewed for §=0.
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(18) Eo[R(XB*)]oc ﬁ " (e—m+mr (6, 2)
+2001—27(0, 2) +s5(0, )]} 0*e~*df
e f 0r1¢=a0[1— 1 (6, 2)1d0
0

+2 f “9re (201~ (0, 2)]
0

—[1—s(8, 2)]} a0

+k f 0" ~'e*’dd

*

™ ~f'(F';m*, Tk,

s

Let f(F';m*, T—k, @)be

¢)where f’ is the noncentral F density with m?*,
T—Fk degrees of freedom and noncentrality #,
and ,F (., . ;. ;.) represent the Gauss hypergeo-
metric function. Then, the necessary condition
for minimizing E,[ R(XB*)] is the following.

*
(as) ELROIBY)

2
oc-—mf ﬁﬂ'le‘“’f(Tm—l s m+2, T—Fk, ﬁ)dﬂ
A -
+4 ﬁ"e_”f(T—m% cm+2, T—F, a)d#
, -

—2 f aﬂg*“f(-f% . m+4, T—k, ﬂ)dt?
, =
zm.-"z

e (T_k_l_ml) (m+T=k)/2+1

+1,+1;

mi )
(a+1)(mi+T—k)
4p m—+T—k
+a_+12FI.(F+11 2
m ma
15+ (a+1) (ma+T—k) )
_ 2m(m+T—k+2)Ap
(m=42)(mA+T—k) (a+1)

2F1(#+1,

m+T—k m mA
2 T L D At T—k))]
=0.
That is, the minimum is attained when
(16) A=0
or
(17) [ J1=o.

It is shown that the inside of the bracket of (17)
reduces to
li=—"
2 +

(18) y:(cxm-]-m—éip)gFl(p, i

+1; y) / {z (1-;;)&[2;?1(#, s

m+T—k m
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+1; 24159 | [an)
where

(19) y=md/(a+1) (mA+T—Ek)®

provided that 240 and (1—a)(am—+m—4p) >0.
It is also seen that the optimal value of  for the
case (1—a)(a@m+m—4p) <0 is

(20) A=0 (i.e., y=0).

Proofs for these results are given in Appendix.

4

Comparing the fixed point solution (18) with
the one obtained by Toyoda and Wallace [5]
reveals that they become coincident when a=0
and pg=1; it is a natural result since the gamma
prior becomes uniform in this case. Therefore,
equation (18) generalizes the Toyoda and Wallace
result in one sense, 1. e., from the diffuse to the
non-diffuse priors on §.

However, it is not always possible to transform
the right hand side of (18) into a function only of
the incomplete beta function ratios as Toyoda
and Wallace could manage. Then, we have devel-
oped a computer program of the Gauss hyper-
geometric series to get the fixed point solutions
of equation (18) directly. We have used an
iterative search procedure to compute them,
differing from zero, to three decimal places for
various selected values of the parameters (@ and
p) and degrees of freedom (m and 7—Fk)7).

According to our numerical results, it is seen
that 92*/da>0 and ga*/du<0, i. e., the optimal
critical values behave monotonically but to the
opposite ways for changes in the parameters,
and p, given any fixed numerator and denomina-
tor degrees of freedom. If @ is comparatively
small (say, .05), the potimal values take fairly
stable points around 1.0~4.0 depending on the
degrees of freedom. However, if @ is compara-
tively large (say, .5), the optimal values become
very sensitive to the value of p, particularly for
small pg. A typical example of the behavior of 2*

6) As 220 and 1=0FVT=BY 4 Goua
1 m—(a+1)y)
hold that 0=sy< —.
a+1
7) We have selected .05, .1, .3 and .5 for the
values of « and .1, .3, .5, .8, .9, 1.0., 1.1, 1.2, 1.5,
2.0 and 3.0 for the ones of g. From the condition 4
=0, it must hold that a>1 = m<4py/(1+a)or a<1
= m>4puf(14+a). Considering these conditions, we
have concentrated our numerical analysis on the

cases m=28, 16 and 24.
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for various values of @ and g is exhibited in Figure
1, where T— W stands for the optimal critical
value given in Toyoda and Wallace [5] which is
976.

Now, let us compare the present optimal
critical values, A*, with 2 which have been found
by Toyoda and Wallace [5]. When a=.05 and g
is around 1.0, i.e., when the investigator has
relatively weak prior knowledge about the
hypothesis, the values of 1* are nearly equal to
the ones of 2. That is to say, the minimum
average relative risk critical values roughly
correspond to the minimum average risk critical
values when the gamma prior with ¢=.05 and
p#=1.0 is used. This is a natural result and also
confirms the Toyoda and Wallace result because
the gamma distribution with such parameter
values is very flat. When a=.5 and particularly
when p<1.0, i.e., when the investigator has
relatively firm prior knowledge about the hypo-
thesis, the values of A* are far greater than the

ones of 1"
Figure 1 Behavior of 1* for various values
of the parameters and for m=8, T—k=16
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In performing preliminary tests in regression
analysis, the investigator sometimes has prior
knowledge of plausibility or implausibility of the
hypothesis. The degree of prior confidence can be
expressed by a parameter (or parameters) of a
skewed prior distribution of the noncentrality
parameter, #. We have adopted the gamma prior
which seems to be reasonable in this context.
We have first shown that the minimum average
risk criterion (rather than the minimum average
relative risk one) can be used in order to find
optimal critical values for pre-tests.

To obtain some specific optimal critical values,

0.976 ~— "‘-_-.__
I L L I
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we have selected some values for the gamma
parameters and the ones for the numerator and
denominator degrees of freedom. We have found
that when the distributional parameters take
such values as the gamma prior distribution
becomes very flat, the present optimal critical
values are almost equal to the ones found by
Toyoda and Wallace [5].

However, when a and p are assigned such
values as the gamma prior skews for relatively
small (large) values of #, the optimal critical
values increase (decrease) considerably. It should
be noted that the optimal critical values are not
robust with respect to the both numerator and
denominator degrees of freedom just as Toyoda
and Wallace [5] showed.

Given no prior knowledge of the plausibility
of the hypothesis, the Toyoda and Wallace
approach [5] which utilizes a diffuse prior would
be a reasonable strategy. However, when one has
some prior confidence of the plausibility (or
implausibility) of the hypothesis, it has become
evident that he should use some larger (smaller)
critical values and therefore the corresponding
smaller (larger) significance levels for pre-tests
than the Toyoda and Wallace values. In any
case, the conventional pre-testing procedure using
1 or 5 per cent significance level would be mislead-
ing. .
(Toshihisa Toyoda : Kobe University)
(Kazuhiro Ohtani: Kobe University of Commerce)

Appendix

First, we note the following relation:
:Fi(a+1,b5¢;9) —2Fi(a,b;5e;y)

b
'-:"S‘FzF1 (a+1,b+1;¢;9),
where
oFi(a,b;e;y)

') &TIMatd)I (41 o

“T@I'®) & et
Combining the above relation with the differ-

entiation formula (e. g., [6], p. 557)
dl2F1(a, b;c;9)]ldy

ab
—-2F1 (a+1,0+1;e+1;9),
the msn:le cf the bracket of (17) reduces to

e T P

4 m—+T—k
(fl)[EF‘Q”’ B Rt

m
?+1;y)
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+ dl:zFl(,u, 2 15 2 1y

/dy] +z (m+T—k+2) (-’;1+1)y
(m—+2) (

m+:"—k+1)
PSS S THET: A
=0,

Rearranging the result, we obtain the equation
(18).

If (1—a)(am-+m—4p) <0, the right hand side
of (18) is negative. However, y is always non-
negative from (19), which is a contradiction.
Therefore, [ ] is not zero. Hence, (20) holds
because of (15). L
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