GLOBAL UNIVALENCE AND STABILITY
OF COMPETITIVE MARKETS*

Ryuzo Sato

In recent years considerable attention has been paid to the question of global univalence for
economic transformations, e. g., Gale and Nikaido [1] and Nikaido [6]. However, very little has
been said regarding the relationship between univalence and economic stability. The purpose of
this paper is to fill this gap. We shall study the relationship between the conditions of global
univalence and of global stability of competitive equilibrium. Since both the conditions of global
univalence and global stability largely depend on some properties of the Jacobian matrix of a
transformation, these two problems are closely related. Consider, for instance, a simple excess
demand function in an isolated market:

p=f(#).
Under certain conditions we can infer that if there exists an equilibrium point p=0 for p= p,,
then the transformation f(p) is globally one-to-one and each solution of f(p)=0 is globally
stable. That is to say, if the derivative of f(#) is negative for all p, then the transformation is
globally one-to-one and the equilibrium point is globally stable (see Figure 1). Here, we note that
a sufficient condition for global univalence is also a sufficient condition for global stability. It is
obvious, however, that global univalence is not necessary for global stability, as Figure 2 shows.
In Figure 2, the transformation is not one-to-one for all $, but the equilibrium point is globally

stable.
Figure 1 ) Figure 2

f(p)=0 ' p

f(p)
f(p)

- We are interested, in what follows, to know under what circumstances the conditions for

global stability are satisfied as well as the conditions for global univalence being fulfilled. Although
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the analysis can be applied, in principle, to any economic transformation of a dynamic nature, we

shall be particularly concerned with the competitive price adjustment mechanism.
I. Global Stability of Tatonnement Price Adjustment with Three Commodities

Consider a standard tatonnement price adjustment system for three commodities. Suppose
that the Walras law holds and that the excess demand function for each commodity is homo-
geneous of order zero. Then, if the third commodity is taken as a numéraire, the determination of
equilibrium price ratios reduces to the study of the system of two differential equations,

S) p=1p),
Where p=(p), p,) are the deviations from their equilibrium prices and p=(p,, p;) are their time
derivatives. f(p)=(fi(p1, p2), fg( $1, pa)) represents the excess demand functions and is of class C!
on E2, '

In this system we are interested in two problems: First, what are the stability conditions in
the large? Second, what are the conditions for global univalence? And how are they related?

Suppose p=0=(0, 0) is an equilibrium-point of (S) and assume the Jacobian matrix

afil

=%

satisfies, at each point of E?, the Hicksian conditions of perfect stability, i. e.,
ofi

i) ap-r:D (i=1,2)

0 =)0 w

Is then the solution p=0 of (S) asymptotically stable in the large or, in other words, does each
solution curve of (S) approach 0 as #—c0? Does the actual price vector eventually approach the
equilibrium values? Next, do the Hicksian conditions ((i) and (ii)) imply that the mapping of
(T) y=/(2)
of E? into E? is globally one to one? We first present a lemma which is a revised version of
Olech’s theorem [7]. _
Lemma 1: Consider system (S) and assume that f( ) is of class C! on E?, that =0 is an equilibrium
point of (S) and that (a) trace of J(p) is negative, while (b) det J(p)is positive and, in
addition, there are two positive constants p and y such that
(© [A(p)|=0>0 for |p|=y>0,
where | p| is the Euclidean norm. Then the solution =0 of (S) is asymptotically stable in
the large. '
Proof : See Appendix (1).
We also need,
Lemma 2: If (S) satisfies the conditions: (a) trace of J(p) is negative, and (b) det J(p) is positive

and
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and if the mapping (T) is globally one-to-one (global univalence), then the equlibrium
solution =0 is globally stable.

Proof: See Appendix (2).

We are now in a position to study whether or not the Hicksian conditions of perfect stability
everywhere are sufficient for both global stability and global univalence. The answer is, in fact,
affirmative. It should be noted, however, that the conditions (a), (b) and (c) in Lemma 1 do not
guarantee the one-to-one-ness of (T), but only the fact that the equation f(p) =y, when y is from
some neighborhood of (0, 0), has exactly one solution. The Hicksian conditions are more stringent
conditions than (a), (b) and (c) in Lemma 1.

Theorem 1: If there exists an equilibrium point f(0)=0 and if the Hicksian conditions of perfect
stability hold everywhere, then the equilibrium solution p=0 of (S) is globally stable and
the mapping (T) is globally one-to-one,

Proof: See Appendix (3).

In fact, under the Hicksian conditions of perfect stability, the question of global stability is
the same as the question of global univalence (one-to-one-ness in the large). In other words, if
(S) is globally stable, then (T) is globally one-to-one and vice versa.

We are also interested to know whether or not the Hicksian conditions are necessary for
global stability. We can show that even if the Hicksian conditions are not satisfied, the system
can achieve global stability. Suppose that one of the Hicksian conditions is not satisfied, e. g.,

of1

ap
show that the system is globally one-to-one and globally stable, as long as (a) and (b) are satisfied.

afs
I

_ af1)(afz) ofi 0fs
<0 and that .— >0 and —— <0 on E?, since the proof of the other possible case ma
(am Y. 3ps ap: P ) >

be reduced to the above case simply by the change of variables. Using the proof of Theorem 1
of.

a7,
d fi 0 F2YACS 2
Q’+!(“J_? el g+,(ﬂ)-=3P1_ %

3 _’bz
And g,/(#4) >0 for f<u< $,. Hence, in this case again ¢( $,)#@( f1). This means, again, that
fa()# fa($), which contradicts f( 2)=f($)=b. So (S) is globally stable. In summary, we have,
Theorem 2: The Hicksian conditions of perfect stability are not necessary for global stability——

=0 and none of the other coefficients of excess demand functions vanishes, then we can still

From the assumption we have ( )( ):f:[} Without loss of generality we can assume that

(see the appendix), we have in this case,

=2, k=1.

also for global univalence. As long as the sum of the own effects is negative and det J(p)
is positive everywhere, while any one of the four effects (two own effects and two cross
effects) is negligible, then (S) is globally stable and (T) is globally one-to-one?’.

1) Compare this result with that of the system which contains gross complementary goods in Sato [8].



— 218 — #t i B % Vol. 26 No. 3

Thus far the results are presented in terms of the Jacobian matrix (thus, the Hicksian con-
ditions). The next theorem deals with stability analysis independent of the Jacobian matrix.
Theorem 3: Suppose that f(#) in (S) is continuous and the coefficients of the excess demand

af

functions 35, (=1, 2) exist and are continuous on E2. Assume further that: (1) (S) has
i

exactly one equilibrium point =0 and it is a point of attraction; (2) there are two positive
constants p and y such that '
|[f($)lzp for [plzy,

and
Eafiﬂo on E2

Then p=0 is globally stable.

Proof: It is enough to note that the existence and continuity of —; (=1, 2) suffice for Green'’s
i

formula to hold. Assumption (1) gives us the fact that the boundary of the set of attraction
2 does not contain any singualr point of S.

II Multi-Commodity Case

We can extend the analysis to a more general case of 74 1 commodity case. Consider now a
standard tAtonnement price adjustment system for # commodities (see Sato [8]):
(&) p=f(p)-

Theorem 4: Let f(p) be an n-dimensional excess demand vector function of class C! on E» such

that

fO)=0; f(p)#0 if p#0;
and that p=0 is a locally asymptotically stable solution of (). Assume further that
() a(p)=0, a(p)=max (X(p)+4(p), 1Si<j<mn,
where A(p)=(A1(p), A2(P), --+, An(P)) are the characteristic roots of the symmetric part of
the Jacobian J(p), i.e., 0=|AI—H(p)|, H(p)=(J+J*)/2, and
@) [ tmin |(p) Jdp=co.

Then, p=0 is a globally asymptotically stable solution of ().

Proof: See Appendix (4).
A more traditional result will be obtainted by studying the Jacobian of f(#). That is to say,

Theorem 5: Let f(p) be of class C! on E* and let J(p) be the Jacobian matrix of f. Let H(p) be

a Hicksian matrix for all p0, where =0 is a stationary point, f(0)=0. Then every

solution of () is globally stable.
Proof: Now An—TrHA"1+4...4(—1)*det H=0. Since the roots of H are all negative we have

2| <B1, B1>0 andalso |A1ds:--2,]=|det H|>B5>0.
Thus each characteristic root everywhere satisfies 1(p) < —e¢, for some constant ¢>0 and
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meets the conditions set by Markus and Yamabe [5] and by Hartman [2]. For a global
univalence condition we have

Theorem 6: Let a map T'; E"—E™ be given by y=f(p). If —A(p)I—H is everywhere semi-
positive definite, where 2 is a positive, non-increasing function of y for 7 >0 such that

f A(y)ay = co,
then T is globally one-to-one and onto.
Proof: If J[s]=J(pas+ p1(1—5)), then

(o) — Flpr)=( f ' JIs1dS)(pa— p).

Hence, for any constant, symmetric, positive definite matrix G,

(pr— PG ($2)— F(B1)) = f (pam POGIS) Pa— p1)ds.

For example, if G] is negative definite and p,+ p, then the integral is negative so that
the map T'; E»—En given by y= f(p) is one-to-one and onto.
For a special case of the Jacobian in which the coefficients of the excess demand functions satisfy
the quasi-dominant-diagonal conditions, we obtain more useful theorem.
Theorem 7: 1f the coefficients of the excess demand functions are quasi-dominant-diagonal for
all =0, then every solution of () is g'l-::-ba,lljyr stable and (T) is globally one-to-one.
Proof: Since J satisfies the quasi-diagonal conditions everywhere, (T) is a contraction mapping
and (J) exhibits a globally stable solution and (T) itself is one-to-one (in view of the
Gale-Nikaido theorem [1]).
The above is one of the most powerful results in which the global Hicksian conditions alone guar-
antee global univalence as well as global stability.
Samuelson’s condition for the Jacobian being quasi-definite can be extended to a general
- nonlinear adjustment system in order to obtain the conditions for both global stability and global
univalence. If the Jacobian is quasi-definite everywhere so that the symmetric part is negative
definite, it satisfies the Krasovski theorem for global stability and also the mapping is globally
one-to-one. In view of the theorem due to Samuelson [9, p. 141], if the Jacobian is quasi-definite,
it is necessarily Hicksian. Hence, we have,
Theorem 8: If the coefficients of the excess demand functions are quasi-definite for all p+0,
every solution of () is globally stable and the mapping is globally one-to-one. The ma-

trix of excess demand coefficients is everywhere Hicksian.
(Brown University)

APPENDIX

(1) Proof of Lemma 1:
Proof: We denote by p(#, Q) the solution of (S) passing through Q; that is $(0, Q)=Q, where Q
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€ E2, p(t, Q)=f(p(t, Q). Let 2 denote the set of attraction of the equilibrium point (0, 0)
of (S); that is, £ is the set composed of all solution curves of (S) which approach (0, 0) as
t—oco. By (a) and (b), (0, 0) is an equilibrium point of attraction of (S), and so £ contains
some neighborhood of (0, 0) and consequently, 2 is a non-empty open set. To prove the
lemma, we have to show that 2=E2. Suppose that 2-E2?. Then bd 2+0. Since 2 is
composed by solution curves of (S) the same holds for the boundary bd 2 of Q2. Let Q
bd £2. Then p=4(f, Q) € bd 2 for 0={<w(Q). Since each equilibrium point of (S) is a
point of attraction, bd £ cannot contain any equilibrium point of (S) and, consequently,
#(f, Q) cannot approach any equilibrium point of (S). Now by (c), the p-set of equilibrium
points is compact. This, together with (c), shows the existence of 0<d<p and >0 such
that | f($)| =d, which contradicts the fact that Q € bd 2. Therefore, bd 2 is empty and
Lemma 1 is proved.
(2) Proof of Lemma 2:
Proof: Suppose there exists a vector function %(p) such that it is of Class C! on E? for which
inequalities (a) and (b) hold on E2, and such that (T) is not globally one-to-one on EZ2.
That means there are $ and $, $+ $ and

- Wp)=Hp)=a.
Then the vector functoin, f(p)="%h(p)—a, would satisfy all assumptions of the global stabi-
lity problem and at the same time system (S) would have two equilibrium points. It is
obvious that no equilibrium point of (S) (if there are two or more) can be globally stable.
Thus the counter example to the global stability problem, if there exists one, will serve also
as a counterexample to the global univalence problem. On the other hand, if f()
satisfies (a) and (b), f(0)=0, and the mapping (T) is globally one-to-one, then (c) holds
and, by Lemma 1, $=0 is globally stable. In other words, if the global stability conditions
are satisfied, then, because of Lemma 1, the global univalence conditions are satisfied.
(3) Proof of Theorem 1: '

Proof: From the assumption we have ( 2k )(3f3)}0 Suppose that (T) is not globally one-to-

051/ \0p:
one. Then there are two points =+ § such that f(3)=f($)=b. For simplicity, assume -
that 6=0. From the first part of the Hicksian conditions, gi <0 and %{U one can
1 2

conclude that if 2=(2,, #2) and §=($,, ), then 7, §, and j?giiﬁ £2. Assume further that
$1< p1 and py< py. Consider the rectangular region

x={p; p<p:i<Pu1=1,2}.
Let function ¢(«) be defined for p;<u =< $, as follows:

pa i fa(u, p2) <0 for pa<pa< P,
d(u)=< v if thereis p,<v<p, that fa(u,v)=0,
Pa i fau, p3) >0 for py< pa< Po.
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ofs

Because of the Hicksian conditions, in particular EE{{], it is easy to see that 95(1;] is well
defined and because of f( )= f($)=>, we have

(P1)=721 (F1)=Pa.
It is easy to see also that ¢(u) is continuous on [ %, #2]. We now prove that the right-hand
derivative of ¢(u) exists for p=u< §,. Indeed, if p,<¢(u)< pa for some u,, then even
the derviative ¢/(u) exists, since in that case f(u, ¢()) =0 in some neighborhood of #,. We
have then

=202/
Pl_ apﬂ Pr1=1o, Pr=0 (o)

If §(uo)= pa (or P3) and fa(u,, ¢(1,))#0, then ¢(u) is constant in some neighborhood of
#, and, therefore, the derivative of ¢(u) also exists and is zero. Finally, consider the case
when ¢(u,)=p, (or Ps) and fy(u,, ¢(1,))=0. Then we have ¢(«)=max ( B, ¢(«)), (or min
(P2, (), for u, =u <wu,+¢* where by g(u) we denote the function satisfying the conditions

q(1o)=¢(1,) and fo(u, g(u))=0. It follows that ¢,/(u,) exists and is equal to g(u,)=0.

Therefore, ¢,/ (#)=0 or ¢,/ (u)= — 3£ : gj; ?, in the formula pr1=u, pa=¢(u). Consider now
1 2

the function g(u)= f, (, ¢(u)). Since ¢,/ (u) exists and f, is of class C!, g,/(x) also exists
and is equal to g,/ (u )_a—f or g./(u)= 3f1_(3f1)(3f=) afn.
dp dp1 \0pa)\0p1)/ dpa
have g,/(v) <0 for p,<u< f,. Hence, g(3)#g($). This means that, owing to ¢( 3,)= 3.
and ¢( $1)= pa, /1(p)+ fi( $), which contradicts with the fact that f( )= f($)=>. Thus (T)
is globally one-to-one and (S) is globally stable.
(4) Proof of Theorem 4: |
Proof: It suffices to show that if (i) and (ii) hold, f(p) satisfies a theorem due to Hartman and
Olech [3]. For fixed $ and a pair of constant vectors # and w, we have
(Jw-w)|v|*+ |w|*(Jvv)—(v-@)[(Jo-w)+(v+ Jw)]
Sal|v]*|w|*—(v-w)],
v=f($), lw|=1 and w-f($)=0.
The left-hand side of the above is unchanged if J is replaced by its symmetric part H, and

From the assumption we

v, w are subjected to an orthogonal transformation: so that, without loss of generality, it
can be supposed that H=diag (4,, -:+, 2,) at the given point p. The left-hand side is then
seen to be

. .
Z Ai(wiwiviv] +wiwiviyt — 2yiwivit)

i=1

. .".IL‘CI=

n

.i;(wfu-f-—w-’vf)“
i=1 f=1

which is

3 %) X Qet Awhos —whuoy
i#]
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(1]
(2)
(3]
(4]
(5]
(6]
(7)

(8]

(9]

<—a ), ), (wvi—wivi),
2 i=l J=1

The above will satisfy the conditions set by Hartman and Olech for global stability.
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