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1. Introduction: Problem Stated
Zellner [5] showed that the efficiency of estimation
of the parameters of a multivariate regreésiﬂn may
be asymptotically improved if Aitken’s generalized
least squares method is applied to a whole set of
equations instead of estimating each equation by
least squares. Zellner's procedure is as follows:
Let the regression system be, following Zellner's

notation,

i X; 0-eee 0 B Uy
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Ei;.lf 0 0 XH_ ﬁ.m‘ “.I
where y; is a T-component vector of the i-th
dependent variable, X; a T'x K; matrix with rank
K; of observations on K; nonstochastic variables, f;
a Kj-component vector of regression coefficients and
u; a T-component vector of random error terms,
each with mean zero. Zellner assumes %4 is a vector
of independent and stationary random variables but
within the same period u; and uy; are correlated.

Write (1) simply as

y=Xp+u (2)
Then
ﬂ'uI ﬂlzf **** EIII
Tyl Oogl-ve+- Tayl
Euwy'(=2)= H “ ur (3)
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where J;J=%Eu';u_f. Zellner's estimator f* of § is
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obtained by first obtaining the least squares estimates
ﬁ, secondly calculating the residuals by ﬂ:y—Xﬁ,
thirdly estimating ¢;; by &;3:-;—113{113, and finally
calculating

Br=(X"271X)"(X"27y) (4)

where 3 is obtained by replacing a; by ¢y in 2.

Zellner obtains the asymptotic distribution of §*
and shows that it is asymptotically more efficient
than ﬁ

The question we want to pose in this paper is,
‘What happens to the superiority of Zellner’s estimator
over the simple least squares estimator if the elements
of u; are correlated? In that case the covariance
matrix of w cannot be expressed as M x M blocks of
diagonal matrices as in (3) and the elements of X
specified to be zero in (3) become non-zero. Thus,
both the least squares and Zellner's method assume
wrong covariance matrices. Is Zellner's method still
better than the least squares method in this case,
because the covariance matrix on which Zellner's
method is based is “‘closer’” to the true one than
that of the least squares method? Or, is the least
squares better, for it may be sometimes better to
be wholly wrong than to be only half wrong?

To answer the above question we consider for
simplicity the case M=2 and where the autocorrelation

of u is a bivariate first-order autoregression. That

P1=[3 2B+ @
(or simply y=XB+u)
and

is,

Uy =", ¢-1+"12Ug, e-1TC1¢

Uge =To1Uy, g-11T2ole, t-11 €2

(6)

where {e;} and {ey] are each independent and
stationary with mean zero and finite covariance matrix

and mutually independent. Assume also that the
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roots of determinantal equation i:;:—l rngi;=ﬂ are
less than unity in modulus.

We want to compare the asymptotic efficiency of
the following four estimators of the parameters B's
of model (5)-(8).

(I) The least squares method :
(X' X)-1X7y.

(1I) Zellner's method: This has been defined above.

(ILI) The least squares method after a quasi first-

This is simply

difference transformation: Assume each of uy and u,
follows a first-order autoregression but is independ-
ent of the other. Estimate the parameters of the
autoregression consistently from the calculated resi-
duals. Transform the variables using these estimates
and apply the least squares method to the trans-
formed regression equations.

(IV)  Zellner's method after a quasi Sfirst-difference
fransformation : After transformation described in
(III), apply Zellner's method.

Each of the above four estimates can be written
in the form {X’l’f{‘.&’}*‘(l”é{‘y), 1=1,2,3,4, for
some estimate of the true covariance matrix I, If
the probability limit of C is C:,} the asymptotic
covariance matrix of the i-th estimates is (X'Cj~!
X)) X0 EC X (X'Cy1X) ! which reaches its min-
imum (in matrix sense)

(X' Z-1x)-t
when Cy=2. Hence we may define the asymptotic
efficiency of the ¢-th estimates by
| X'Cyt X |
| X'Cl 20 X || X 21 X|
But this itself is not a good criterion for comparison

Eff(i)= (7)

because it depends on X. A natural procedure then
is to consider a lower bound of (7) as X varies within
a certain class. We will use one such lower bound
proposed by Watson [3], namely,

442

LBE (5 =(_I;_+T_1$°- 8)

where A, 2; are the largest and the smallest chara-
cteristic root of Cy~'% respectively. Before obtaining

1) In section 3 each €} is defined in detail,
Because of our assumptions stated after equation
(6), the convergence of a to Cj in probability
can be easily proved by means of Theorem 3A of
Diananda [1].
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the formulas for 4; as functions of the parameters
in model (5)-(6), we will, in next section, briefly
discuss Watson's aforementioned work.
2. The Lower Bound of Efficiency

Consider the regression model y=XB+u where y
is a T-component vector of dependent variables, Y
a T'x K matrix of constants, 8 a K-component vector
of parameters to be estimated, and u a T-component
vector of stationary random variables with mean zero.
If one uses Aitken’s least squares estimator assuming
the covariance matrix of u is 4 when it really is B,
the efficiency of the estimator may be defined by

| X’A-1X)?
T | X’A7BAX|- | X' BX|
12'Z|*

T 124z 12 47Z]
where Z=A-Y2X and A=A-"2BA-V?,

Let 2,2, .. »2g be the column vectors of Z,

)

or

(10)

Suppose that zg_p,q, - » 2x are characteristic vectors
of A associated with the characteristic roots AT-hs1s

wveeee, Ap. Without loss of generality we may assume

that 4, <A< vvvee <Ap_p. Then, according to theorem
of Watson [3)],
421-2p_p 428 p_p -y 42g-ndr-Ka
T At22-0)® BetAra)? (AmeatArxa)?
(11)

In the special case where all the columns of Z
except one are characteristic vectors of A associ-
ated with the characteristic roots of other than the
largest and smallest roots, the lower bound of effi-
ciency is given by

- (;i ;-) : (12)
where 4 and 2 are the largest and the smallest

characteristic roots of A respectively. We will use
this formula in this paper, just as Watson and
Hannan [4] do in theirs. The use of the simpler
formula (12) rather than the more general (11)
may be justified by observing that both (11) and
(12) measure how widely scattered the characteristic
roots of A are and hence one behaves somewhat
similarly to the othei}.

Consideration of a lower bound is in the spirit of
minmax and may be justified for itself. But there
is a possibility that estimator (a) is better than
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estimator (b) if judged by the lower bound of effi-
ciency whereas the latter is more efficient for most
probable values of X. The smaller is the likelihood
of such a possibility, the better measure the lower
bound of efficiency is. Unfortunately we have not
been able to justify Watson’s lower bound fully in
this respect: hence, we must use it with caution.
3. Derivation of Characteristic Roots

In this section we show how to obtain the char-
acteristic roots required to calculate the lower bound
of efficiency (8) for each of the four estimators we
proposed to compare in section 1.
(I) The least squares method

Put ¢4:=0 in formula (16) below. Thus, the char-
acteristic roots of C,"13 are, approximately,

_ Ju (@) fzz(ﬂ‘}
Rl() _{ T11 Tza
\/(fn(w) foo W}) 4(fu(@) fo(®) —|fr (ﬂi‘)lz)}
11 oo T11022
w=2j,  j=0,1,., T—=1  (13)

T
For the meaning of notation, see discussion of (II)
below.
(II) Zeliner's method
Partition & naturally as

2h 2
S_E ( “1) od [ 11 12:|
Usg 'y 1) = Ty Ty

We want to obtain the characteristic roots of

I gpIN Y, 2
C"E:[ﬁu 12 ] [ 1 1z:|
: 0'121 ﬂzzf 221 222

[ﬂ-‘f G*I][Eﬂ Elg]

say=

? G'I b! Eu Egg

where ¢, s, and g,, are the diagonal elements of

2y, 2o, and 2y, respectively.

Let U=-2[e7|; b k=0,1, -, T—1
_JTT[g T }J p =L Ly *" 5 L =

8)
Then, we have asymptotically,

2) Professor Takeuchi pointed out to me that
LBE (12) is equal to

.- v (X'B1X)
min min
xr v V(X'ATX) ' XA BATIX (XA X)
3) For the asymptotic diagonalization of a

covariance matrix, see Grenander and Rosenblatt
[2, p. 103 1].
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[U* 0 Ma-! c-I][U {}‘J[U“ 0 }[Eu EHMU 0 ]
0 U*Jle-I b-ITJLO UJLO U*JLZy ZpllO U

a-I e IN[Fy Fys
z[ﬂ*f b'f}[Fn Fzz]
=|:G'F11+G'F21 ﬂ-'Fu+ﬂ-F22] (14)
¢ Fu+b-Fy ¢ Fra+b - Fo
where Fy, Fys, 3, and Fy; are diagonal matrices with
the diagonal elements fy; (@), fu(®), fiz(@), and fy
(w) respectively for m:%j, J=0,1, e , T—1. f11(w)
and, fi. (@) are the spectral densities of wu;, and wu,
respectively, and fy;(w) and fy(w) are the cross
spectral densities between wu;, and u,. They are
defined by
Ju(w) = E:ﬂ (Ety, g4ntha, ¢) €0

Fua(@) =3 (B, gomtiy,¢) €12

) (15)

Jr(w) = _5: (Euy, 14nls, ) €0

f21 {fﬂ) = _i: (Euf,£+nu"l, t) e-inw

But the first term of (14) has the same characteristic
roots as C,~'%, for UU*=U*U=1 Calculating the
characteristic roots of the last term of (14) directly,

we have

&

1
2(01102—012")
+011fo (@)
(020111 (0) =201 Ref1s () +011 f22 (@))?

—4 (011020 — 0122 11 (@) f22 (@) — | f12(@) |?}

w=2j, j=0,1,+-r, T—1. (16)

A (@) = {02211 (@) =202 Refyz (@)

Because of our specification (6), s are related to
r's as follows.
(@) fi(@) - —fat -
= (I—Ret**) -} (I—R'e~t*) -1 (17
[fn(m) fzzfm):l ( i . 4n

where
i1 T2
R=( )
T21 T2
Therefore we have

S (@) =Dt (14755 — 27y OS 0+7127)
Jaz (@) =D+ (1+7r1y*—2ryy cOS w+14:7)
Refye (@) =D+ (rig+721) cos @
— (rurie+72era) ] (18)
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| /12 (@) [*=D~2. [d4r1y7y) cOS® w0 —2 (154 74y)
(rurie+7aere) €os @+ (ryrys
+7a9701) 4 (11— 121) 7]
where D= (1+r1*) (1472%) 47107 (T12701— 2711720+ 2)
—2(ru+7e) (rurse—ri2Ta+1) cos @44 (ryy e —113 7a)
cos® .
¢’s are approximately related to f's by

1 -1 ) 3
o= T Z fu(%f)

i=0

Pt r.
ﬂ’zz=? gf:z(“f.?) ’ (19)

1 -1 i
ﬂ'lz=? > ReflE('FJ) J

j=o0
(III) The least squares method after a gquasi first-
difference transformation
This method means premultiplying equation (5) by
the transformation operator H to be defined below
and then applying the least squares method to
regression equation

Hy=HXB+ Hu (20)
where
H;, 0
.H-_-( 1 )
0 H,
[ 1 ﬁ .................. D_
—p; 1 0
Hi=| 0 —p; ,  t=1,2.
L 0 "y 1
and
ty'dy - g
p1=p lim ﬁ_l_=1f~11+fu.}_!§
St - (21)
] _ ﬂ
Pz=p1imf‘#=ﬁz+rn.j
Uz, —1Ug, -1 Tos

where 4's are the calculated residuals.

St

Thus we have

where
1 P" ...... Pir-l
1 Pt 1
1—pdf|
pi T 1

The characteristic roots of C3~'2 are the same as

Qi= (HyHy)~'= , 1=1,2.

those of

P M N e 4 4

Bt A

=|:91 0 ]]Fu Fl!]_[GIFll GIFIE] 22)
0 GyllFy Fo Gy Fy GyFoy

where G; is a diagonal matrix with the diagonal
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fori=1,2,
Evaluating the characteristic roots of the last term
of (22), we have

24(@) =—-(01(@) 1 (0) +02 (@) fir (@)

+4[g: () fu (@) +g: (@) f22 (W}q]é
—4g1 (@) g2 (@) [ f11 (@) for (@) — | f12 (@) |2]}

W=—j, j=0,1, s, T—1 (23)

where g;(w) =1—2p;cos w+p, i=1, 2.
(AV) Zellner's method after a quasi first-difference
transformation

To evaluate C,, we must first evaluate the proba-
bility limit of the variance and covariance of the

calculated residuals of Hu; and Hu,. They are

" 1 .l -~ III £l el .\
vp=p lim F(ul_Plul. -1) " (= pyily, -y)

2
(T
=14 7‘122(522 - —"—)

ay

) 1 .. A . -
Ve =p lim ?(uz —P2ltg, -1) {Hz—Pzﬂz. -1)

Py
=1‘|‘T'212(d'11— 12)

Tz

> (24)

* 1 -~ - - -
vyz=p lim T (1t —pyity, 1) (12 — Pallz, -1)

2
T
=027 12791 -1
T11T22

£

This method means premultiplying equation (20)
by the operator J to be defined below and then
applying the least squares method to

JHy=JHXB+JHu (25)
where J is the matrix such that
vy I vy 1771

Vig- I vga-I :|

Thus C,"'X¥=H'J'JHZ, the characteristic roots of
which we now set out to evaluate. They are the

J'I= [

same as the characteristic roots of
W*H' WW*J'JWW*HWH=*IW

(o o}

where
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But we have

W*H' W= [P‘ n}

0 P
where P;(i=1,2) is the diagonal matrix with the

diagonal elements

I—pﬁa%!-" ,
and W*HW is the complex conjugate of the above.
Thus the lengthy matrix product above can be
simplified as

1 Ly Fyy+Ly3Fyy Ly Fyo+ Ly Fas
Virvas—vie® [L:nF n+LeeFoy Loy Frg+ Lo F EJ

where L;; is a diagonal matrix with the diagonal

2xi _
elements vy-|1 — pyer?|?  F=0,1,. .. y T—1, Ly

g 2xi . Gei
with v33]1 — pee 7|, Ly with —vp-(1 — pyer )

(1— pza'?;'if), and L; with the complex conjugate
of the elements of L,,, F's are defined after equa-
tion (14).
Evaluating the characteristic roots of above directly,
we have
1
2 (v11v2e—v12°)
{SEVS—4( | J12(@)|*—Sf12(@) faz(@))(V12® — v13033)
(14 1% —2p, cos ®) (1+py*—2p; cos w)}

2 (0) =

= =0, 1, eeeees —
O="5d] 0,1, , T—1 (26)
where S=wvs3(1—2p; cos @+ p,*) 11 (@) 41y (1—2p; cos
2v
@+ ps*) [z (@) +Tu (2 (pr7a1+ pariz) cOs* @—[ (T214712)

(14+p1p2) + (1 + p2) (ruare + 722721) ] cos @+ (1 + py1p2)
(ruriztreera) + (P2—p1) (ra—r12) }.
4. Computation

In section 3 we have obtained the formulas for
the characteristic roots required to calculate the lower
bound of efficiency (8) for each of the four estimators
From (13), (16), (17), (19), (21),
(23), (24), and (26), the characteristic roots 1;(w),

i=1, 2, 3,4, can be expressed as functions of the four

to be compared.

parameters 7y, 719, T2, and 7y as well as T

In computing the characteristic roots we fix T to
be 20. That means, there are 40 roots to compute
for each estimation method, from which the largest
and smallest are to be chosen. For the values of

r's, the following 108 combinations are chosen:
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rn: 0.2,0.5,0.7
ree: 0.2,0.5,0.7
et 0.2,0.5
r2: —0.7, —0.5, —0.2,0.2,0.5, 0.7
For ry; and ry, only positive values are chosen for
simplicity, for positive autoregressive coefficients are
more likely in economic data. Once we assume ry
and 7 to be positive, there is no loss of generality
in assuming 7y to be positive, for fixing r;; and
res and changing signs of ry; and 7y simultaneously
keep the values of 1;(w) invariant.
If the roots of dererminantal equation
m—4 Ti

=()
7'21 'Tzz‘—l

exceed unity in modulus, equations (6) become unsta-
ble. There are 15 combinations in which unstability
occurs, and computation is made for the remaining
93 combinations. The results are shown in the appen-
ded 1:;3.1:~-lejt}I
In the table, the values of ¥p,p. and o
V01102,

their ratio are also shown. The former is the geometric

and

mean of the correlation coefficients between u,; and
Uy, ¢-1 and between us ; and us ¢_,. The latter is the
correlation coefficient between u,, and uy. p, and p,
are always positive in our cases.
5. Conclusion

It is clearly shown in the table that the lower
bound of efficiency of estimator (I) is almost identical
with that of estimator (II), that of (III) is almost
identical with that of (IV), and that the latter two
are considerably higher than the former two in every
combination considered. In other words, when the
residuals follow process (6), application of a quasi
first-difference transformation increases the lower
bound of efficiency considerably, whereas application
of Zellner's method leaves it almost unaltered. Before
extracting any general conclusion from this result,
we must answer a few doubts that might be cast
about this analysis.

Firstly, the use of the particular lower bound of

efficiency may be questioned. We have already men-

4) Computation was carried out on Burroughs
E101 in the computation office of the Institute of
Economic Research, Histotsubashi University.
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Table: Lower Bound of Efficiency of the Four Estimators and
Correlation Coefficients (Values in Percentage)5)
4dud 4120, 413ds ande | a1z a5z S
L[ |7 | e | W | Tetao® | Gt | Gerao? | VP® | Vonen Vanaz | V0®
1 | o2 | 02| 02 |-07 39 37 43 5 | = -8 ‘ —~36
2 =0.5 52 51 59 B0 21 -5 -27
3 —0.2 73 73 84 84 20 0 ! 0
4 0.2 | 53 53 78 78 22 11 | 50
5 0.5 30 30 48 47 27 20 | 74
6 0.7 20 20 32 31 30 25 | 84
7 0.5 | —07 19 19 20 20 20 -2 -9
8 —0.5 31 31 33 33 | 20 0 0
9 —02 | 52 51 59 0 | = 27
10 | 02 | 30 30 48 47 27 20 74
11 05 | 12 12 19 16 38 35 94
12 07 | 5 5 8 6 49 49 100
13 0.5 | 02 |—07 | 26 22 31 34 0 | -2 —66
14 -05 | 32 30 50 51 37 =21 —58
15 -0.2 39 39 82 82 33 -8 | -25
16 0.2 22 22 65 65 | 38 2 | 56
17 0.5 | 10 11 26 24 49 2 | 85
18 0.7 | 6 6 13 11 57 53 | 93
19 05 | =07 | 13 13 15 16 | 36 —18 —50
20 -05 | 21 21 28 20 | 35 —15 —43
21 -0.2 30 30 56 56 | 32 -3 | -10
22 0.2 10 11 35 32 | 42 31 | 75
23 ; 0.5 2 5 2 69 68 98
24 i 07 0 0 0 0 87 85 98
25 0.7 02 | =07 | 14 13 18 22 51 —33 —65
26 -0.5 | 15 16 35 37 | 50 —36 -73
27 =02 | 14 15 78 78 | 41 -18 —43
28 0.2 | i 7 44 43 47 32 69
29 0.5 2 2 7 7 70 67 95
30 0.7 0 ] 0 0 78 74 a5
31 0.5 | =07 | 9 9 11 13 47 —31 —66
32 , —0.5 | 13 13 23 25 45 —28 —61
33 ' —0.2 15 16 52 53 39 —12 —31
34 ‘ 0.2 2 2 15 13 | 56 48 86
35 05 | 02 | 02 | -07 | 22 22 40 4 | 32 1 4
36 -05 | 30 30 56 56 | 82 3 10
37 -02 | 39 39 82 82 | 33 8 25
38 0.2 22 22 66 65 36 20 56
39 05 | 10 11 35 32 | 42 31 75
40 ; 0.7 6 6 21 17 | 47 39 | 84
41 05 | —07 | 13 13 16 16 | 34 13 38
42 —-0.5 21 21 28 29 | 35 15 43
43 -02 | 82 30 50 51 | a7 21 58
44 0.2 10 11 26 24 49 42 85
45 0.5 | 2 2 5 3 69 68 98
46 0.7 0 0 0 0 85 83 98
47 0.5 0.2 | —0.7 13 12 25 28 51 -10 | —19
48 -05 | 19 17 43 43 i 51 -13 | —25
49 —02 | 31 31 76 76 | 50 0 0
50 02 12 12 52 51 | 57 33 58
51 0.5 3 3 16 13 | 69 58 84
52 0.7 | 0 0 0 0 74 63 85
53 0.5 | —0.7 7 9 9 50 -3 -8
54 —0.5 11 11 19 19 50 0 0
55 —02 | 19 17 44 43 | 51 13 25
56 0.2 3 3 16 13 69 58 84
57 07 | 02 | —07 8 8 13 15 64 -32 —50
58 -05 | 1 9 26 28 | 63 —29 —46
59 | —0.2 '" 14 14 68 69 | 60 -12 -19
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1 p & = e ] B i fods | Adsds | Ade ! o | o0 | o / e
|| " ' (T4+20? | (et+de)? | (Ta+d9)® | (tdo? | 0102 | Vonon | Yanonl PP
60 | 05 | 07 0.2 | 02 | 3 4 22 | 380 | 70 48 70
61 | 0.5 0 0 0 0 86 78 90
62 0.7 | 0 0 0 0 97 96 98
63 05 | —0.7 | 0 0 0 0 61 —16 -27
64 -0.5 | 6 6 11 12 60 —14 —24
65 | =02 | 9 9 35 36 | 59 1 1
66 0.2 ] 0 ] 0 82 70 BE
67 0.7 0.2 02 | =07 | 12 13 36 39 39 11 28
68 -05 | 15 16 52 53 39 12 31
69 -0.2 14 15 78 78 | 41 18 43
70 0.2 | 6 7 44 43 | 47 32 69
71 05 | 2 2 15 13 | se 48 86
72 | 1 07 | 0 0 0 0 | 59 50 84
73 05 | =07 | 8 9 13 14 44 25 57
74 —-0.5 l 13 i 13 23 25 45 28 61
75 -0.2 | 15 | 16 35 37 | 50 36 73
76 0.2 | 2 2 7 7 'r 70 67 95
77 0.5 0.2 | =07 | 0 0 0 o | 39 -3 -6
78 —0.5 0 0 0 o | so -1 -
79 -02 | 14 14 68 68 | 60 12 19
80 | 0.2 3 | 4 32 30 :I 70 48 70
81 05 | 0 0 0 0 82 70 86
82 | 07 | 0 0 0 o | o | o 07
83 || 0.5 | —0.7 ] 3 | 3 4 4 B1 11 18
84 | —0.5 6 | 6 11 12 | 60 14 24
85 | -0.2 11 9 26 28 63 29 48
86 ‘ 0.2 | 0 0 0 0 | 86 78 90
87 ‘ 0.7 0.2 | =07 | 3 3 8 10 | 71 -17 —24
a8 | —0.5 5 4 20 21 | 71 —16 —-22
89 -0.2 | 10 10 56 56 70 0 0
00 | 0.2 | 0 0 0 o | =2 60 73
91 ! 05 | =07 1! 0 0 0 0 70 -3 -2
92 " -0.5 | 0 0 0 0 70 0 0
93 | -02 | 5 5 20 21 | 7 16 22
AVERAGE 183 | 132 28.8 28.8
Average of cascs wherenoneof the | 545 | 244 | M8 | 40 |

tioned this point in section 2.

Secondly it may be thought that the result is
peculiar to the first-order autoregressive model as-
sumed in our study. But we think that this model
does contain some essential characteristics common
with a more general model and we can extend our

conclusion to a more general model to a certain

5) For calculating o), ¢;; and g3, in cases 24,
30, 46, 52, 61, 62, 66, 72, 81, 82, 86, 90, and 91
in the table, the following exact formula was used,
rather than the approximate formula (23).

2 o -

011 1—ry* —2rpre -T2 P!

g2 |=| —rura 1—rree—"elen —T12le 0
2 2

O3 —7ra”  —2raTe 1—7g 1

The approximation is not good in these cases
becasue the value of D becomes extremely small
for some value of w.

extent. It would be reasonable to guess that Zellner's
method is not helpful in a more general model
whenever the residuals are auto-correlated to some
extent and that a quasi first-order transformation
is helpful to the extent the residuals are dependent
on their first lags. Regarding this former point, it
should be noted that after the transformation the
residuals no longer follow the first-order autore-
gression as in (6) and yet Zellner's method represent-
ed by (IV) doesn’t do any better than (III).
Thirdly, it may be thought that the superiority
of (III) and (IV) over (I) and (II) and the similarity
of (I) with (II) and (ITI) with (IV) in the lower
bound of efficiency are due to the fact that in
the combinations of the parameters considered in

this analysis the dependence of a residual on its own
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lagged value is always greater than its dependence
on the other residual. Note that in the table vp,p;
is meant to be a measure of the dependence of a
residual on its own lagged value and a;,Vo,,0y; a
measure of the dependence on the other residual.
This observation, however, is only partially true. It
is true that comparison of these two measures explain
the superiority of (III) over (II) to some extent. But
the correspondence is never consistent, and moreover
the superiority of (III) over (II) is much greater
than one could imagine from the largeness of Yp,p;
over ;,/4o,,0.

In conclusion, we believe that the result of this
study indicates the following advices: (1) If the
residuals are believed to be both autocorrelated and
correlated among each other, and if we are to use
either a quasi first-difference transformation or
Zellner's method, it would be much more rewarding
to use the former. (2) Zellner’'s method is worth
trying, for, if the residuals are independent either

to begin with or after some transformation, Zellner’s

ot i Vol. 19 No. 2

method does increase efficiency as proved in Zellner’s
original paper, and, even if they are not, one can't

be much worse off.
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