EXISTENCE OF STATIONARY EQUILIBRIUM
IN THE WALRASWICKSELLIAN
~ MODEL OF PRODUCTION®

Takuma Yasui

Léon Walras’ theory of capital formation [6, Sec-
tion V] can be examined in several ways. One point
that remains ambiguous is whether or not his the-
ory necessarily presupposes a progressive economy
where net addition to capital and net saving are
taking place.l) Walras himself said that his economy
is a progressive one, but it was Wicksell who poin-
ted out that this was wrong and Walras’ theory
would be more appropriately applicable to a statio-
nary economy, thereby rather gaining “in rigor” [7,
pp. 226-7]. In fact a recent article by M. Morishima
[4] reveals that the economic world Walras dealt
with may be not only a progressive economy, but
also a stationary or even a retrogressive one, because
in his system there is no definite relationship bet-
ween gross investment and depreciation of capital.
The aim of this paper is to recast the Walrasian
general equilibrium system of capital formation
into a model of a strictly stationary economy, and
to prove, with respect to this model, the existence
of equilibrium. In building our model we take ac-
count of some aspects of Wicksell’s version of a sta-
tionary state that has been reformulated by R. So-
low [5] and simplified a bit by R. Dorfman [2]. So
ours might be named the Walras-Wicksellian model

of production or (gross) capital formation.

* This is a slightly revised version of my pa-
per which was written under the stimulus of Mo-
rishima’s significant article [4] during my stay at
Stanford University in 1960-61. I am indebted to
Professors Kenneth J. Arrow, Michio Morishima,
Hirofumi Uzawa and especially to Ken-ichi Inada
for very valuable comments and suggestions. Any
error which may remain is of course the author's
whole responsibility.

1) As for other ambiguities, see [3].

1. We begin with some preliminary remarks which
are necessary to the construction of our model.

Suppose there are n kinds of commodities in an eco-
nomy, the first group of which consists of m kinds of
consumers’ goods labeled 1, ---, m, and the second
group n-m kinds of capital goods labeled m+1, ---,
n. Outputs of the first group of commodities are
taken for pure final goods in the sense that they are
only for use of households, never serving as inputs
in production. Outputs of the second group of com-
modities are taken for pure intermediate products
in the sense that they are entirely used as means of
production, but can never serve as final consuma-
bles. These intermediate products or capital goods,
however, are regarded here as durable-use goods
whose span of life is finite. Thus any ¢-th capital
good lasts N; vears,2) whereupon it disintegrates.
For brevity we shall call consumers’ and capital
goods as foods and machines respectively.

Since we are assuming stationary conditions, the
stock of each machine, its annual rate of deprecia-
tion and its annual rate of output must all be con-
stant. This implies that the rate at which each ma-
chine wears out and has to be replaced is constant
and equal to its annual rate of output. It is evident
that, in order to ensure this condition, the stock of
each type of machine must be constituted in a spe-
ciflc manner. Thus if we denote the total stock of
any i-th machine in a given year by ky, k¢ has to be
evenly distributed as to age from age 1 to age Ny,
and its annual output, denoted by y;, must equal

~ k¢/ Ny

Next we turn to the structure of production. Be-

2) ‘year’ is taken as a unit of time period for
convenience.
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sides n kinds of commodities let there be s kinds of
primary factors, labeled 1, ---, s. We shall call them
s kinds of labor. We represent by
aij(i=m+1, -, n; j=1, .-, n)the amount of the i-
th machine service needed to produce one unit of
the j-th commodity which may be either a food or
a machine. Similarly, b;;(i=1, ---, 5; j=1, ---, n)
represents the amount of the ¢-th labor per unit of
the j-th commodity. The production coefficients
ai;'s and by;'s are, as usual, assumed to be non-nega-
tive constants.

In stationary equilibrium the total stock of every
machine must be fully utilized. Hence we must have,

for any ¢-th machine,

gai‘fm"-'-;:é...;a‘jyj:kﬁ t=m+1, -, n,
where z;'s stand for the respective annual output of
each kind of food. It is assumed here that one unit
of machines of each type offers one unit of its service
per year, so that the stock of each type of machine
and the amount of its service per year can be expre-
ssed by the same number.

On the other hand it has been already observed
that the relation y;==Fk;/N; holds for any type of ma-
chine in the stationary conditions. Hence it follows
that

m "

(1) Eaiix}+‘f=§+1¢q(kﬂ‘wﬂ =ki, t=m+1, -, n.

. This is the form that is needed hereafter.

Let P; be the price of a new machine of the j-th
type,
service). Then we have the following well-known

ry be its annual rental (i. e., the price of its

relationship between P; and ry,

— ) =¥y
Pj=rfﬂr j=m+1: ey M,
i
where ¢ is the annual rate of interest and »; is assu-
med to be independent of time. Barring the case
where the rate of interest is zero, the above equation

could be rewritten as

o |
(i) P.f=qfi[1—(‘1"i—q) ], j=m+1, -y,

where ¢ is the reciprocal of the rate of interest, i. e.,
g=1/i. Since y; or ky/N; is the annual output of the
t-th machine, the total gross investment in a given

P s 7 "%
ear is or ri|1—| —— _ is
y {-§+1 ¥ 'i.=:§+1qI i]: (1+'|?) :|N{

gross investment must be matched by gross saving.
Following Walras, we deflne gross saving, i. e., the
excess of gross income over consumption, as gz, the
product of gand 2z, where z is the demand for interest
which would be earned from gross saving, and is
assumed to be a well-deflned function of the varia-
bles specified later. It will be easily seen that our
demand for interest is analogous to the demand for
“marchandise idéale” (E)which Walras mentioned

in his theory of capital formation and credit.1)

2. Wearenow ina positioﬁ to write down our mo-
del of stationary equilibrium in matrix form. At the
outset the notation is defined in what follows:

z=(xy, -+, Tm)is a column vector whose i-th com-
ponent represents the annual output of the i-th food.
Similarly

k= (km+1, +*, kn)is 2 column vector for the stocks
of the machines.

L= (L,, ---, Lg)is a column vector for the total sup-
ply of each kind of labor.

p=(py, -+, Pm)is a Tow vector for the prices of the
foods. Similarly

P= (Pmp+1, -+, Pn) is a Tow vector for the prices of
the machines.

r=(rm+1, -+, Tn)iS a row vector for the annual ren-
tals of the services of machine.

w= (w,, ---, w;) is a row vector for the annual wages
of each kind of labor.

Ny, a scalar, is the length of life of the i-th ma-
chine, and assumed to be a given positive integer.

As explained above, ¢ is the reciprocal of the rate

1) See [6], esp. 250,
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of interest, and z is the demand for interest.

Finally we need the following six matrices:

im0 Tm+1,m Qe m Am+1,n
Aymm| resesirerinasaniiondenss . Ay eeaetiiensvesnananpsnsass )
L Gn1 Anm R R Gnn
=Byiscensnrssananes bim By by +eeeeresaees Din
Bysg| cnessrisiensincndenasss - By sssesnsigeersnfinniapianae )
[ SAem— bsm [ By gupg =eoeseseenes ben
" Nm+1 - _(_Q_)Nmﬂ -
N=l| Cy= 1-|-_';{
" Na 1_(;}‘)3& |
L 14q/ -

Note that 4, is a square matrix while Nand Vare

diagonal ones.
Our system of equations can then be formulated
as follows:
(1) Az4 A, N-tk=k,
(2) B,z+B.N-1k=L,
(3) rd,+wB,=p,
(4a) rA;+wB;=P,
(4b) P=grV.

(1)and (2)state the equality between the supply and
demand of the machine-service and labor respecti-
vely.(3)and (4a) state respectively that the price of
each food or machine must equal its unit costs.(4d)
is simply a generalization of (ii)above, which expre-
sses the equality between the price of a machine of
each type and the discounted present value of its
rentals over the whole length of its life. It is more
convenient to put together(4a)and (4b)and obtain a
single equation

(4) rd;+wBy=qrV.

Furthermore there are the demand and supply

functions, relating z, L and 2z to p, w, r, ¢ and k respe-

ctively, i. e,

(5) z=z(p,w, 1 q, k),
(6) L=L(p,w, 1, q,k),
(7) z=z(p,w, 1, ¢ k).
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" Finally we have an equation which expresses the

equality between gross saving and gross investment
(8) gz=gqrVN-1k.

All that is necessary to complete our system is
some consideration of Walras’ law. In our system

this law is given by
pr+qe=rk+wkl

which is an identity in any non-negative p, w, r, ¢
and k such that(p, g) #0 and (w, ) #0.

3. Our problem is now to prove the

Theorem ;: Ezcept an economically trivial case in
which nothing is produced of all kinds of the foods, the
system (1) - (8) possesses a non-negative solution.

To show this, the following assumptions are used :

(a) The demand and supply functions z, L and z
are respectively single-valued and continuous func-
tions of p=0, w=0, r=0, ¢=0 and k=0 such that(p,
q) #0 and (w, r) #0. z and L are always non-negative
for these values of the variables, and are positively
homogeneous of zero degree with respect to p, w and
r. z is positively homogeneous of first degree with
respect to the same variables.

(b) The supply functions L are bounded so that
to each component of L there corresponds a least
upper bound respectively.

(c) The supply functions L are such that Li(=
the i-th component of L) >0 implies wy>0. This is
equivalent to saying that wy=0 implies L;=0.

(d) The demand function z is such that z<0 for
p+0, g=q, where § is a sufficiently large positive
number.

(e) (i)Every row and (ii)every column of 4, has
at least one positive element.

(fy 4, is indecomposable.

(g) (i)Every row and (ii)every column of B,and
B, has at least one positive element.l)

Proof of the theorem: p can be always chosen so

1) Mathematically there is no need of the assu-
mption that every column of B, has at least one
positive element. We preserve, however, this assu-
mption for economic reasons.
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as to make the following equation hold :
rd;+wB,=p,

hence py’s are not independent variables and could

be eliminated. Note that p, determined by this equa-

tion, is always semi-positive (p>0) by virtue of =20,

w20 and (w, r) #£0, and of assumptions(ei)and (gi).

Construct the following expressions:

(9) E(w,r, q k)=Az+ A, N-k—k

(10) F(w,r q k) =Bxz+B,N-k—L

(11) G(w, r, ¢) =qrVN-1—r4, N-' —wB; N-!
(12) H(w, r, q, k) =2—rVN-1%.

Then we have

(13) rE4+wF+Gk+gqH=px+qz—rk—wL=0.

Let the domains of % and ¢ be 0<k;<Fy, (1=m+1,
-+, n), and 0 ¢< 7 respectively, where k;’s are chosen
as arbitrary positive numbers so large that, for each
(kg), i=m+1,:-+,n, at least one component of B, N-1(k;)
is greater than the least upper bound of the corres-
ponding component of L.1) Here(k;)is defined as a
column vector (0, ---, kg, ---, 0), i. e, a column vector
whose i-th component is %;, while all of the other
components are zero. Next we normalize w and r so

as to make their component sum equal one, i. e., ry=
0, wy20, Zri+Zwy=1.

We define
E*=max (0, E), F*=max(0, F),
G*=mﬂ.x<ﬂ, G}, H‘=ma1{ﬂ; H}p

and consider the following continuous mapping : 2)

(4a) R=THEC i=m41, o,

148’
wy+Fy*
a4b) Wy=—T1gv J=1, 8,
*
(4) Ky=JatHRGet i=m+1, -, 7,

IS G

_ g+gqHa*

1) Note that B, N-1(k;) >0 owing to assumption
(gii).

2) Our mapping technique and the ensuing
discussions are a slight modification of Morishi-
ma’s. See [4].

where S$*= 3 E*+ 3 Fy*.

We see that R;=0, W;=0, 3 Ri+ 3 W;=1, 0= Ki<
ky and 0@ <§. Therefore, owing to Brouwer’s theo-
rem, there exists a fixed point (7, @, &, §)such that

7 _f‘fEi*

{153) 1= I+§* ’

(15b) =3T3,

(15¢) #,= FetkGer
(15d) q+ad*

First we prove that £*, f* G* and A* are all zero.
Suppose at least one component of £* or £* to be
positive so that §*>0. Then it can be shown that

#¢ >0 if and only if E¢*>0,
©;>0 if and only if F;* >0,
k¢ >0 if and only if G¢* >0,
d >01if and only if A*>0,

whence it follows FE4+@F+GE4+§H >0, a contradi-
ction to(13). Therefore we must have §*=0, that is to
say, Ey*=0 and £;*=0, and of course £*=0 and #*
=0,

Suppose next at least one component of G*, say
Gy*, to be positive. Since §*=0, we obtain from (15c)
kiGi*=FkiGe*. Thus ky=F;. kg is, however, chosen so
large as to make at least one component of B,N-1(%;)
greater than the least upper bound of the corres-
ponding component of L. Hence at least one compo-
nent, say the s-th, of B,#4 B,N-!% is greater than L,,
the s-th component of L, so that £,*>0 follows.
This contradicts F*=0. Therefore G4*=0, and of
course G*=0.

Finally, suppose A*>0. Since §*=0, we get from
(15d)§A*=gHA* Thus §=g. Then the assumption (d)
shows that 2=<0(note that #4,4+©B,=$>0), and so
H=%—FPN-EZ0, a contradiction. Therefore A*=0.

We have now proved that there exists a fixed point
such that £<0, <0, G<0 and F<0.

Our remaining problem is to eliminate the inequ-
ality signs from these expressions. To do this, let us
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assume that # is not zero, i. e., semi-positive.(If #
happens to be zero and there is no other solution,
our story ends here and we cannot go on any further.
But this is surely an ecnﬁc-mically uninteresting as
well as trivial case.)

At first it may be noticed that the above inequali-
ties, together with FE+®F+Gk+3§H=0, enable us
to deduce that

(16a) if #4 >0, then E;=0,
(16b) if ©;>0, then F;=0,
(16¢) if Bg >0, then G¢=0,
(16d) if § >0, then H=0.

Now the expression E<0 shows that 4,2= (I—
A;N-1) E. But 4,2>0 because of our assumption £ >0
and of assumption (eii), Thus 4, N-'k <K holds for a
£=0. On the other hand, 4, is indecomposable owing
to assumption(f), and so is 4, N-1. Hence, by a the-
orem of Debreu-Herstein’s [1, p. 602], the maximal
characteristic root of 4,N-! is less then one, so that
(I— 4;N-1)-1>0. Then we have (I— 4, N-1)-14,2 <K, of
which the left-hand side is clearly positive. Thus &>
0. By (16¢) this implies G=0.

Next, since <0 we have B,#+B,N-1k <L. But the
condition & >0 together with assumption(gi)indica-
tes that B, N-1£>0. Hence L>0, and through assum-
ption (¢) we can conclude that @ >0. By (16b) this
implies #=0.

We have shown above that G is zero. This gives
GFV=FfA;+@B, or FP(GI—P-14;)=@B;, #>0 is
already known, and so # B, >0 by virtue of assump-
tion(gii) .We see at once that § is positive.(Otherwise
we have a contradiction.) By (16d) this implies H=0.

Furthermore #¥ (§1—P-14,) >0 holds for a ¥ 20,
and P-14, is indecomposable. Hence the maximal
characteristic root of P-14, is less than § and the
inverse of (§I—P-'4;) is positive. Therefore 7P =
® B, (gI—V-14;)-1>0, which enables us to conclude
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that 7 >0. By (16a)this implies E=0.

What remains is trivial. Since 7 is positive and
assumption (eii) holds (or since # is positive and
assumption (gii) holds), #4,+®B, is clearly positive
so that $ >0. Moreover it can be easily shown that 2
is also pdsitive.

Summing up, we have been able to prove the
above-mentioned theorem which could be now shar-
pened as follows :

Provided that # is not zero, the equations(1)-(8)
are satisfied for £>0,2>0,$>0,®>0,7>0,§>0and
k >0.
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